2D Models

Astrophysics

  • King 14 (King_14)

    • King 14

      \(f{(x)} = k * {[}1/\sqrt{(1 + {(x/r\_c)} ^2)} - 1/\sqrt{(1 + {(r\_t/r\_c)} ^2)}{]} ^2\)

      [k, r_c, r_t]

    • King 14 With Offset

      \(f{(x)} = k * {[}1/\sqrt{(1 + {(x/r\_c)} ^2)} - 1/\sqrt{(1 + {(r\_t/r\_c)} ^2)}{]} ^2 + \text{Offset}\)

      [k, r_c, r_t, Offset]

BioScience

  • Aphid Population Growth (AphidPopulationGrowth)

    • Aphid Population Growth

      \(N{(t)} = a * \exp{(bt)} * {(1 + c * \exp{(bt)})}^{-2}\)

      [a, b, c]

    • Aphid Population Growth With Offset

      \(N{(t)} = a * \exp{(bt)} * {(1 + c * \exp{(bt)})}^{-2} + \text{Offset}\)

      [a, b, c, Offset]

  • von Bertalanffy Growth (BertalanffyGrowth)

    • von Bertalanffy Growth

      \(L{(t)} = L_{inf} * {(1.0 - \exp{(-K *{(t-t_{zero})})})}\)

      [Linf, K, tzero]

    • von Bertalanffy Growth With Offset

      \(L{(t)} = L_{inf} * {(1.0 - \exp{(-K *{(t-t_{zero})})})} + \text{Offset}\)

      [Linf, K, tzero, Offset]

  • Beverton-Holt A (BevertonHoltA)

    • Beverton-Holt A

      \(y = r / {(1 + {({(r-1)}/K)} * x)}\)

      [r, K]

    • Beverton-Holt A With Offset

      \(y = r / {(1 + {({(r-1)}/K)} * x)} + \text{Offset}\)

      [r, K, Offset]

  • Beverton-Holt B (BevertonHoltB)

    • Beverton-Holt B

      \(y = rx / {(1 + {({(r-1)}/K)} * x)}\)

      [r, K]

    • Beverton-Holt B With Offset

      \(y = rx / {(1 + {({(r-1)}/K)} * x)} + \text{Offset}\)

      [r, K, Offset]

  • BioScience A (BioScienceA)

    • BioScience A

      \(y = a * {(1.0 - {(b * c^{x})})}\)

      [a, b, c]

    • BioScience A With Offset

      \(y = a * {(1.0 - {(b * c^{x})})} + \text{Offset}\)

      [a, b, c, Offset]

  • BioScience B (BioScienceB)

    • BioScience B

      \(y = a * {(1.0 -{(1.0 + {(x/b)}^{c})}^{-1.0 *d})}\)

      [a, b, c, d]

    • BioScience B With Offset

      \(y = a * {(1.0 -{(1.0 + {(x/b)}^{c})}^{-1.0 *d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Cellular Conductance (CellularConductance)

    • Cellular Conductance

      \(g = p3/{(1+\exp{({(v-p1)}/p2)})} + p4*\exp{({(v-45)}/p5)}\)

      [p1, p2, p3, p4, p5]

    • Cellular Conductance With Offset

      \(g = p3/{(1+\exp{({(v-p1)}/p2)})} + p4*\exp{({(v-45)}/p5)} + \text{Offset}\)

      [p1, p2, p3, p4, p5, Offset]

  • Derek Duncan Custom Equation (DerekDuncanCustomEquation)

    • Derek Duncan Custom Equation

      \(y = a / {(1 + \exp{(-1/b*{(x-c)})})}^{d}\)

      [a, b, c, d]

    • Derek Duncan Custom Equation With Offset

      \(y = a / {(1 + \exp{(-1/b*{(x-c)})})}^{d} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Dose-Response A (DoseResponseA)

    • Dose-Response A

      \(y = b + {(a-b)} / {(1 + 10^{x-c})}\)

      [a, b, c]

  • Dose-Response B (DoseResponseB)

    • Dose-Response B

      \(y = b + {(a-b)} / {(1 + 10^{c-x})}\)

      [a, b, c]

  • Dose-Response C (DoseResponseC)

    • Dose-Response C

      \(y = b + {(a-b)} / {(1 + 10^{d*{(x-c)}})}\)

      [a, b, c, d]

  • Dose-Response D (DoseResponseD)

    • Dose-Response D

      \(y = b + {(a-b)} / {(1 + 10^{d*{(c-x)}})}\)

      [a, b, c, d]

  • Dose-Response E (DoseResponseE)

    • Dose-Response E

      \(y = b + {(a-b)} / {(1 + {(x/c)}^{d})}\)

      [a, b, c, d]

  • Generalized Negative Exponential (GeneralizedNegativeExponential)

    • Generalized Negative Exponential

      \(y = a * {(1.0 - \exp{(-bx)})}^{c}\)

      [a, b, c]

    • Generalized Negative Exponential With Offset

      \(y = a * {(1.0 - \exp{(-bx)})}^{c} + \text{Offset}\)

      [a, b, c, Offset]

  • Generalized Product Accumulation (GeneralizedProductAccumulation)

    • Generalized Product Accumulation

      \(y = a{(b-x)} / {(c + {(b-x)})} + d{(b-x)} + f\)

      [a, b, c, d, f]

  • Generalized Substrate Depletion (GeneralizedSubstrateDepletion)

    • Generalized Substrate Depletion

      \(y = ax / {(b + x)} - cx - d\)

      [a, b, c, d]

  • High-Low Affinity (HighLowAffinity)

    • High-Low Affinity

      \(y = abx / {(1+bx)}\)

      [a, b]

    • High-Low Affinity With Offset

      \(y = abx / {(1+bx)} + \text{Offset}\)

      [a, b, Offset]

  • High-Low Affinity Double (HighLowAffinityDouble)

    • High-Low Affinity Double

      \(y = abx / {(1+bx)} + cdx / {(1+dx)}\)

      [a, b, c, d]

    • High-Low Affinity Double With Offset

      \(y = abx / {(1+bx)} + cdx / {(1+dx)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • High-Low Affinity Isotope Displacement ([Hot] subsumed) (HighLowAffinityIsotopeDisplacement)

    • High-Low Affinity Isotope Displacement ([Hot] subsumed)

      \(y = ab / {(1+bx)}\)

      [a, b]

    • High-Low Affinity Isotope Displacement ([Hot] subsumed) With Offset

      \(y = ab / {(1+bx)} + \text{Offset}\)

      [a, b, Offset]

  • High-Low Affinity Double Isotope Displacement ([Hot] subsumed) (HighLowAffinityIsotopeDisplacementDouble)

    • High-Low Affinity Double Isotope Displacement ([Hot] subsumed)

      \(y = ab / {(1+bx)} + cd / {(1+dx)}\)

      [a, b, c, d]

    • High-Low Affinity Double Isotope Displacement ([Hot] subsumed) With Offset

      \(y = ab / {(1+bx)} + cd / {(1+dx)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Hyperbolic A (HyperbolicA)

    • Hyperbolic A

      \(y = {(a + x)} / {(b + x)}\)

      [a, b]

    • Hyperbolic A With Offset

      \(y = {(a + x)} / {(b + x)} + \text{Offset}\)

      [a, b, Offset]

  • Hyperbolic B (HyperbolicB)

    • Hyperbolic B

      \(y = {(a + bx)} / {(c + x)}\)

      [a, b, c]

    • Hyperbolic B With Offset

      \(y = {(a + bx)} / {(c + x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Hyperbolic C (HyperbolicC)

    • Hyperbolic C

      \(y = {(a + x)} / {(b + cx)}\)

      [a, b, c]

    • Hyperbolic C With Offset

      \(y = {(a + x)} / {(b + cx)} + \text{Offset}\)

      [a, b, c, Offset]

  • Hyperbolic D (HyperbolicD)

    • Hyperbolic D

      \(y = {(a + bx)} / {(c + dx)}\)

      [a, b, c, d]

    • Hyperbolic D With Offset

      \(y = {(a + bx)} / {(c + dx)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Hyperbolic E (HyperbolicE)

    • Hyperbolic E

      \(y = ax / {(b + x)}\)

      [a, b]

    • Hyperbolic E With Offset

      \(y = ax / {(b + x)} + \text{Offset}\)

      [a, b, Offset]

  • Hyperbolic F (HyperbolicF)

    • Hyperbolic F

      \(y = ax / {(b + x)} + cx\)

      [a, b, c]

    • Hyperbolic F With Offset

      \(y = ax / {(b + x)} + cx + \text{Offset}\)

      [a, b, c, Offset]

  • Hyperbolic G (HyperbolicG)

    • Hyperbolic G

      \(y = ax / {(b + x)} + cx / {(d + x)}\)

      [a, b, c, d]

    • Hyperbolic G With Offset

      \(y = ax / {(b + x)} + cx / {(d + x)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Hyperbolic H (HyperbolicH)

    • Hyperbolic H

      \(y = ax / {(b + x)} + cx / {(d + x)} + fx\)

      [a, b, c, d, f]

    • Hyperbolic H With Offset

      \(y = ax / {(b + x)} + cx / {(d + x)} + fx + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Hyperbolic I (HyperbolicI)

    • Hyperbolic I

      \(y = ab / {(b + x)}\)

      [a, b]

    • Hyperbolic I With Offset

      \(y = ab / {(b + x)} + \text{Offset}\)

      [a, b, Offset]

  • Hyperbolic J (HyperbolicJ)

    • Hyperbolic J

      \(y = x / {(a + bx)}\)

      [a, b]

    • Hyperbolic J With Offset

      \(y = x / {(a + bx)} + \text{Offset}\)

      [a, b, Offset]

  • Hyperbolic Logistic (HyperbolicLogistic)

    • Hyperbolic Logistic

      \(y = ax^{b} / {(c + x^{b})}\)

      [a, b, c]

    • Hyperbolic Logistic With Offset

      \(y = ax^{b} / {(c + x^{b})} + \text{Offset}\)

      [a, b, c, Offset]

  • Jorge Rabinovich Population Growth (JorgeRabinovichPopulationGrowth)

    • Jorge Rabinovich Population Growth

      \(Y = {(P1*CC)} / {(P1 + {(CC-P1)}*\exp{(-R*X)})}\)

      [P1, CC, R]

    • Jorge Rabinovich Population Growth With Offset

      \(Y = {(P1*CC)} / {(P1 + {(CC-P1)}*\exp{(-R*X)})} + \text{Offset}\)

      [P1, CC, R, Offset]

  • Membrane Transport (MembraneTransport)

    • Membrane Transport

      \(y = a{(x-b)} / {(x^{2} + cx + d)}\)

      [a, b, c, d]

    • Membrane Transport With Offset

      \(y = a{(x-b)} / {(x^{2} + cx + d)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Michaelis-Menten (MichaelisMenten)

    • Michaelis-Menten

      \(y = ax / {(b + x)}\)

      [a, b]

    • Michaelis-Menten With Offset

      \(y = ax / {(b + x)} + \text{Offset}\)

      [a, b, Offset]

  • Michaelis-Menten Double (MichaelisMentenDouble)

    • Michaelis-Menten Double

      \(y = ax / {(b + x)} + cx / {(d + x)}\)

      [a, b, c, d]

    • Michaelis-Menten Double With Offset

      \(y = ax / {(b + x)} + cx / {(d + x)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Michaelis-Menten Isotope Displacement Double ([Hot] subsumed) (MichaelisMentenDoubleIsotopeDisplacement)

    • Michaelis-Menten Isotope Displacement Double ([Hot] subsumed)

      \(y = a / {(b + x)} + c / {(d + x)}\)

      [a, b, c, d]

    • Michaelis-Menten Isotope Displacement Double ([Hot] subsumed) With Offset

      \(y = a / {(b + x)} + c / {(d + x)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Michaelis-Menten Isotope Displacement ([Hot] subsumed) (MichaelisMentenIsotopeDisplacement)

    • Michaelis-Menten Isotope Displacement ([Hot] subsumed)

      \(y = a / {(b + x)}\)

      [a, b]

    • Michaelis-Menten Isotope Displacement ([Hot] subsumed) With Offset

      \(y = a / {(b + x)} + \text{Offset}\)

      [a, b, Offset]

  • Michaelis-Menten Product Accumulation (MichaelisMentenProductAccumulation)

    • Michaelis-Menten Product Accumulation

      \(y = a{(b-x)} / {(c + {(b-x)})}\)

      [a, b, c]

    • Michaelis-Menten Product Accumulation With Offset

      \(y = a{(b-x)} / {(c + {(b-x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Negative Exponential (NegativeExponential)

    • Negative Exponential

      \(y = a * {(1.0 - \exp{(-bx)})}\)

      [a, b]

    • Negative Exponential With Offset

      \(y = a * {(1.0 - \exp{(-bx)})} + \text{Offset}\)

      [a, b, Offset]

  • New Zealand Ecology Logistic 1 (NewZealandEcologyLogistic1)

    • New Zealand Ecology Logistic 1

      \(n = B0 + {({(B1 - B0)} / {(1.0 + \exp{({(B2 + D)} * B3)})})}\)

      [B0, B1, B2, B3]

  • New Zealand Ecology Logistic 2 (NewZealandEcologyLogistic2)

    • New Zealand Ecology Logistic 2

      \(n = B0 + {({(B1 - B0)} / {(1.0 + \exp{({(B2 + D + {(B4*D^{2})})} *B3)})})}\)

      [B0, B1, B2, B3, B4]

  • Plant Disease Exponential Model (PlantDisease_Exponential)

    • Plant Disease Exponential Model

      \(Incidence = y0 * \exp{(r * time)}\)

      [y0, r]

    • Plant Disease Exponential Model With Offset

      \(Incidence = y0 * \exp{(r * time)} + \text{Offset}\)

      [y0, r, Offset]

  • Plant Disease Gompertz Model (PlantDisease_Gompertz)

    • Plant Disease Gompertz Model

      \(Incidence = \exp{(ln{(y0)} * \exp{(-r * time)})}\)

      [y0, r]

    • Plant Disease Gompertz Model With Offset

      \(Incidence = \exp{(ln{(y0)} * \exp{(-r * time)})} + \text{Offset}\)

      [y0, r, Offset]

  • Plant Disease Logistic Model (PlantDisease_Logistic)

    • Plant Disease Logistic Model

      \(Incidence = 1 / {(1 + {(1 - y0)} / {(y0 * \exp{(-r * time)})})}\)

      [y0, r]

    • Plant Disease Logistic Model With Offset

      \(Incidence = 1 / {(1 + {(1 - y0)} / {(y0 * \exp{(-r * time)})})} + \text{Offset}\)

      [y0, r, Offset]

  • Plant Disease Monomolecular Model (PlantDisease_Monomolecular)

    • Plant Disease Monomolecular Model

      \(Incidence = 1 - {({(1 - y0)} * \exp{(-r * time)})}\)

      [y0, r]

    • Plant Disease Monomolecular Model With Offset

      \(Incidence = 1 - {({(1 - y0)} * \exp{(-r * time)})} + \text{Offset}\)

      [y0, r, Offset]

  • Plant Disease Weibull Model (PlantDisease_Weibull)

    • Plant Disease Weibull Model

      \(Incidence = 1 - \exp{(-1.0 * {({(time - a)} / b)}^{c})}\)

      [a, b, c]

    • Plant Disease Weibull Model With Offset

      \(Incidence = 1 - \exp{(-1.0 * {({(time - a)} / b)}^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Plant Disease Weibull Model Scaled (PlantDisease_WeibullScaled)

    • Plant Disease Weibull Model Scaled

      \(y = Scale * {(1 - \exp{(-1.0 * {({(time - a)} / b)}^{c})})}\)

      [a, b, c, Scale]

    • Plant Disease Weibull Model Scaled With Offset

      \(y = Scale * {(1 - \exp{(-1.0 * {({(time - a)} / b)}^{c})})} +\text{Offset}\)

      [a, b, c, Scale, Offset]

  • Preece And Baines Growth (PreeceAndBaines)

    • Preece And Baines Growth

      \(y = a - 2{(a-b)} / {(\exp{(c{(x-d)})} + \exp{(f{(x-d)})})}\)

      [a, b, c, d, f]

  • Scaled Log (ScaledLog)

    • Scaled Log

      \(y = a * log{(x)}\)

      [a]

    • Scaled Log With Offset

      \(y = a * log{(x)} + \text{Offset}\)

      [a, Offset]

  • Scaled Log Transform (ScaledLog_Transform)

    • Scaled Log Transform

      \(y = a * log{(bx + c)}\)

      [a, b, c]

    • Scaled Log Transform With Offset

      \(y = a * log{(bx + c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Scaled Power (ScaledPower)

    • Scaled Power

      \(y = a * x^{b}\)

      [a, b]

    • Scaled Power With Offset

      \(y = a * x^{b} + \text{Offset}\)

      [a, b, Offset]

  • Scaled Power Transform (ScaledPower_Transform)

    • Scaled Power Transform

      \(y = a * {(cx + d)}^{b}\)

      [a, b, c, d]

    • Scaled Power Transform With Offset

      \(y = a * {(cx + d)}^{b} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Standard 3-Parameter Logistic Equation (StandardLogistic3Parameter)

    • Standard 3-Parameter Logistic Equation

      \(y = d + {(a - d)} / {(1 + {(x / c)})}\)

      [a, c, d]

  • Standard 4-Parameter Logistic Equation (StandardLogistic4Parameter)

    • Standard 4-Parameter Logistic Equation

      \(y = d + {(a - d)} / {(1 + {(x / c)}^{b})}\)

      [a, b, c, d]

  • Standard 5-Parameter Logistic Equation (StandardLogistic5Parameter)

    • Standard 5-Parameter Logistic Equation

      \(y = d + {(a - d)} / {(1 + {(x / c)}^{b} )}^{f}\)

      [a, b, c, d, f]

  • Weibull (Weibull)

    • Weibull

      \(y = a * {(1.0 - \exp{(-b * {(x - c)}^{d})})}\)

      [a, b, c, d]

    • Weibull With Offset

      \(y = a * {(1.0 - \exp{(-b * {(x - c)}^{d})})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Xiaogang Peng Immunoassay (XiaogangPengImmunoassay)

    • Xiaogang Peng Immunoassay

      \(y = K / {(1.0 + \exp{(-1.0 * {(a + blog{(x)} + cx)})})}\)

      [K, a, b, c]

    • Xiaogang Peng Immunoassay With Offset

      \(y = K / {(1.0 + \exp{(-1.0 * {(a + blog{(x)} + cx)})})} + \text{Offset}\)

      [K, a, b, c, Offset]

BurkardtCollectionBased

  • Arcsin CDF Based (arcsin_cdf)

    • Arcsin CDF Based

      \(y = a * asin{( {(bx+c)} / d)}\)

      [a, b, c, d]

    • Arcsin CDF Based With Offset

      \(y = a * asin{( {(bx+c)} / d)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Arcsin PDF Based (arcsin_pdf)

    • Arcsin PDF Based

      \(y = a / \sqrt{( b^{2} - x^{2})}\)

      [a, b]

    • Arcsin PDF Based With Offset

      \(y = a / \sqrt{( b^{2} - x^{2})} + \text{Offset}\)

      [a, b, Offset]

  • Bradford CDF Based A (bradford_cdf_a)

    • Bradford CDF Based A

      \(y = ln{(1.0+c*{(x-a)}/{(b-a)})} / ln{(c+1.0)}\)

      [a, b, c]

    • Bradford CDF Based A With Offset

      \(y = ln{(1.0+c*{(x-a)}/{(b-a)})} / ln{(c+1.0)} + \text{Offset}\)

      [a, b, c, Offset]

  • Bradford CDF Based B (bradford_cdf_b)

    • Bradford CDF Based B

      \(y = d * ln{(1.0+c*{(x-a)}/{(b-a)})} / ln{(c+1.0)}\)

      [a, b, c, d]

    • Bradford CDF Based B With Offset

      \(y = d * ln{(1.0+c*{(x-a)}/{(b-a)})} / ln{(c+1.0)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Bradford PDF Based (bradford_pdf)

    • Bradford PDF Based

      \(y = c / {({( c * {(x-a)} + b-a)} * ln{(c + 1.0)})}\)

      [a, b, c]

    • Bradford PDF Based With Offset

      \(y = c / {({( c * {(x-a)} + b-a)} * ln{(c + 1.0)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Burr CDF Based A (burr_cdf_a)

    • Burr CDF Based A

      \(y = 1.0 / {( 1.0 + {( b / {( x-a )})}^{c})}^{d}\)

      [a, b, c, d]

    • Burr CDF Based A With Offset

      \(y = 1.0 / {( 1.0 + {( b / {( x-a )})}^{c})}^{d}+ \text{Offset}\)

      [a, b, c, d, Offset]

  • Burr CDF Based B (burr_cdf_b)

    • Burr CDF Based B

      \(y = f / {( 1.0 + {( b / {( x-a )})}^{c})}^{d}\)

      [a, b, c, d, f]

    • Burr CDF Based B With Offset

      \(y = f / {( 1.0 + {( b / {( x-a )})}^{c})}^{d} +\text{Offset}\)

      [a, b, c, d, f, Offset]

  • Burr PDF Based (burr_pdf)

    • Burr PDF Based

      \(y = {(c*d/b)} * {({(x-a)}/b)}^{(-c-1.0)} *{(1.0+{({(x-a)}/b)}^{(-c)})}^{(-d-1.0)}\)

      [a, b, c, d]

    • Burr PDF Based With Offset

      \(y = {(c*d/b)} * {({(x-a)}/b)}^{(-c-1.0)} *{(1.0+{({(x-a)}/b)}^{(-c)})}^{(-d-1.0)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Dipole CDF Based (dipole_cdf)

    • Dipole CDF Based

      \(y = a * arctan{(x)} + b/x\)

      [a, b]

    • Dipole CDF Based With Offset

      \(y = a * arctan{(x)} + b/x + \text{Offset}\)

      [a, b, Offset]

  • Exponential PDF Based (exponential_pdf)

    • Exponential PDF Based

      \(y = {(1.0/b)} * \exp{({(a-x)}/b)}\)

      [a, b]

    • Exponential PDF Based With Offset

      \(y = {(1.0/b)} * \exp{({(a-x)}/b)} + \text{Offset}\)

      [a, b, Offset]

  • Exponential PDF Based Scaled (exponential_pdf_scaled)

    • Exponential PDF Based Scaled

      \(y = Scale * {(1.0/b)} * \exp{({(a-x)}/b)}\)

      [a, b, Scale]

    • Exponential PDF Based Scaled With Offset

      \(y = Scale * {(1.0/b)} * \exp{({(a-x)}/b)} + \text{Offset}\)

      [a, b, Scale, Offset]

  • Extreme Values CDF Based A (extreme_values_cdf_a)

    • Extreme Values CDF Based A

      \(y = \exp{(-\exp{(-{({(x-a)}/b)})})}\)

      [a, b]

    • Extreme Values CDF Based A With Offset

      \(y = \exp{(-\exp{(-{({(x-a)}/b)})})} + \text{Offset}\)

      [a, b, Offset]

  • Extreme Values CDF Based B (extreme_values_cdf_b)

    • Extreme Values CDF Based B

      \(y = c * \exp{(-\exp{(-{({(x-a)}/b)})})}\)

      [a, b, c]

    • Extreme Values CDF Based B With Offset

      \(y = c * \exp{(-\exp{(-{({(x-a)}/b)})})} + \text{Offset}\)

      [a, b, c, Offset]

  • Extreme Values PDF Based (extreme_values_pdf)

    • Extreme Values PDF Based

      \(y = {(1.0/b)} * \exp{({({(a-x)}/b)}-\exp{({(a-x)}/b)})}\)

      [a, b]

    • Extreme Values PDF Based With Offset

      \(y = {(1.0/b)} * \exp{({({(a-x)}/b)}-\exp{({(a-x)}/b)})} + \text{Offset}\)

      [a, b, Offset]

  • Fisk CDF Based A (fisk_cdf_a)

    • Fisk CDF Based A

      \(y = 1.0 / {(1.0+{(b/{(x-a)})}^{c})}\)

      [a, b, c]

    • Fisk CDF Based A With Offset

      \(y = 1.0 / {(1.0+{(b/{(x-a)})}^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Fisk CDF Based B (fisk_cdf_b)

    • Fisk CDF Based B

      \(y = d / {(1.0+{(b/{(x-a)})}^{c})}\)

      [a, b, c, d]

    • Fisk CDF Based B With Offset

      \(y = d / {(1.0+{(b/{(x-a)})}^{c})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Fisk PDF Based (fisk_pdf)

    • Fisk PDF Based

      \(y = {(c/b)} * {({(x-a)}/b)}^{{(c-1.0)}} / {(1.0 +{({(x-a)}/b)}^{c})}^{2}\)

      [a, b, c]

    • Fisk PDF Based With Offset

      \(y = {(c/b)} * {({(x-a)}/b)}^{{(c-1.0)}} / {(1.0 +{({(x-a)}/b)}^{c})}^{2} + \text{Offset}\)

      [a, b, c, Offset]

  • Folded Normal PDF Based (folded_normal_pdf)

    • Folded Normal PDF Based

      \(y = c * {(1/b)} * cosh{(a*x/b^{2})} * \exp{(-0.5 *{(x^{2} + a^{2})}/b^{2})}\)

      [a, b, c]

    • Folded Normal PDF Based With Offset

      \(y = c * {(1/b)} * cosh{(a*x/b^{2})} * \exp{(-0.5 *{(x^{2} + a^{2})}/b^{2})} +\text{Offset}\)

      [a, b, c, Offset]

  • Frechet CDF Based A (frechet_cdf_a)

    • Frechet CDF Based A

      \(y = \exp{(-1.0 / x^{a})}\)

      [a]

    • Frechet CDF Based A With Offset

      \(y = \exp{(-1.0 / x^{a})} + \text{Offset}\)

      [a, Offset]

  • Frechet CDF Based B (frechet_cdf_b)

    • Frechet CDF Based B

      \(y = b * \exp{(-1.0 / x^{a})}\)

      [a, b]

    • Frechet CDF Based B With Offset

      \(y = b * \exp{(-1.0 / x^{a})} + \text{Offset}\)

      [a, b, Offset]

  • Frechet PDF Based A (frechet_pdf_a)

    • Frechet PDF Based A

      \(y = \exp{(- 1.0 / x^{a})} / x^{{( a + 1.0)}}\)

      [a]

    • Frechet PDF Based A With Offset

      \(y = \exp{(- 1.0 / x^{a})} / x^{{( a + 1.0)}} +\text{Offset}\)

      [a, Offset]

  • Frechet PDF Based B (frechet_pdf_b)

    • Frechet PDF Based B

      \(y = b * \exp{(- 1.0 / x^{a})} / x^{{( a +1.0)}}\)

      [a, b]

    • Frechet PDF Based B With Offset

      \(y = b * \exp{(- 1.0 / x^{a})} / x^{{( a +1.0)}} + \text{Offset}\)

      [a, b, Offset]

  • Genlogistic CDF Based A (genlogistic_cdf_a)

    • Genlogistic CDF Based A

      \(y = {(1.0/{(1.0+\exp{(-{(x-a)}/b)})})}^{c}\)

      [a, b, c]

    • Genlogistic CDF Based A With Offset

      \(y = {(1.0/{(1.0+\exp{(-{(x-a)}/b)})})}^{c} + \text{Offset}\)

      [a, b, c, Offset]

  • Genlogistic CDF Based B (genlogistic_cdf_b)

    • Genlogistic CDF Based B

      \(y = {(d/{(1.0+\exp{(-{(x-a)}/b)})})}^{c}\)

      [a, b, c, d]

    • Genlogistic CDF Based B With Offset

      \(y = {(d/{(1.0+\exp{(-{(x-a)}/b)})})}^{c} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Genlogistic PDF Based (genlogistic_pdf)

    • Genlogistic PDF Based

      \(y = {(c/b)} * \exp{(-{({(x-a)}/b)})} /{(1.0+\exp{(-{({(x-a)}/b)})})}^{{(c+1.0)}}\)

      [a, b, c]

    • Genlogistic PDF Based With Offset

      \(y = {(c/b)} * \exp{(-{({(x-a)}/b)})} /{(1.0+\exp{(-{({(x-a)}/b)})})}^{{(c+1.0)}} + \text{Offset}\)

      [a, b, c, Offset]

  • Gompertz CDF Based (gompertz_cdf)

    • Gompertz CDF Based

      \(y = 1.0 - \exp{(-b * {(a^{x}-1.0)} / ln{(a)})}\)

      [a, b]

    • Gompertz CDF Based With Offset

      \(y = 1.0 - \exp{(-b * {(a^{x}-1.0)} / ln{(a)})} + \text{Offset}\)

      [a, b, Offset]

  • Gompertz CDF Based Scaled (gompertz_cdf_scaled)

    • Gompertz CDF Based Scaled

      \(y = Scale * {(1.0 - \exp{(-b * {(a^{x}-1.0)} / ln{(a)})})}\)

      [a, b, Scale]

    • Gompertz CDF Based Scaled With Offset

      \(y = Scale * {(1.0 - \exp{(-b * {(a^{x}-1.0)} / ln{(a)})})} +\text{Offset}\)

      [a, b, Scale, Offset]

  • Gumbel CDF Based (gumbel_cdf)

    • Gumbel CDF Based

      \(y = a * \exp{(-\exp{(-x)})}\)

      [a]

    • Gumbel CDF Based With Offset

      \(y = a * \exp{(-\exp{(-x)})} + \text{Offset}\)

      [a, Offset]

  • Gumbel PDF Based (gumbel_pdf)

    • Gumbel PDF Based

      \(y = a * \exp{(-x-\exp{(-x)})}\)

      [a]

    • Gumbel PDF Based With Offset

      \(y = a * \exp{(-x-\exp{(-x)})} + \text{Offset}\)

      [a, Offset]

  • Half Normal PDF Based (half_normal_pdf)

    • Half Normal PDF Based

      \(y = c * {( 1.0/b)} * \exp{(-0.5*{({(x-a)}/b)}*{({(x-a)}/b)})}\)

      [a, b, c]

    • Half Normal PDF Based With Offset

      \(y = c * {( 1.0/b)} * \exp{(-0.5*{({(x-a)}/b)}*{({(x-a)}/b)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Inverse_gaussian PDF Based A (inverse_gaussian_pdf_a)

    • Inverse_gaussian PDF Based A

      \(y = \sqrt{(b/{(c*x^{3})})}*\exp{(-b*{(x-a)}^{2} /{(2.0*a^{2}*x)})}\)

      [a, b, c]

    • Inverse_gaussian PDF Based A With Offset

      \(y = \sqrt{(b/{(c*x^{3})})}*\exp{(-b*{(x-a)}^{2} /{(2.0*a^{2}*x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Inverse_gaussian PDF Based B (inverse_gaussian_pdf_b)

    • Inverse_gaussian PDF Based B

      \(y = \sqrt{(b/{(c*x^{3})})}*\exp{(-b*{(x-a)}^{2} /{(2.0*a^{2}*x)})}\)

      [a, b, c, d]

    • Inverse_gaussian PDF Based B With Offset

      \(y = \sqrt{(b/{(c*x^{3})})}*\exp{(-b*{(x-a)}^{2} /{(2.0*a^{2}*x)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Levy PDF Based (levy_pdf)

    • Levy PDF Based

      \(y = b^{0.5} *\exp{(-b/{(2.0*{(x-a)})})}/\sqrt{({(x-a)}^{3})}\)

      [a, b]

    • Levy PDF Based With Offset

      \(y = b^{0.5} *\exp{(-b/{(2.0*{(x-a)})})}/\sqrt{({(x-a)}^{3})} + \text{Offset}\)

      [a, b, Offset]

  • Levy PDF Based Scaled (levy_pdf_scaled)

    • Levy PDF Based Scaled

      \(y = Scale * b^{0.5} *\exp{(-b/{(2.0*{(x-a)})})}/\sqrt{({(x-a)}^{3})}\)

      [a, b, Scale]

    • Levy PDF Based Scaled With Offset

      \(y = Scale * b^{0.5} *\exp{(-b/{(2.0*{(x-a)})})}/\sqrt{({(x-a)}^{3})} + \text{Offset}\)

      [a, b, Scale, Offset]

  • Log Normal PDF Based (log_normal_pdf)

    • Log Normal PDF Based

      \(y = \exp{(-0.5*{({(ln{(x)}-a)}/b)}^{2})} / {(b*x)}\)

      [a, b]

    • Log Normal PDF Based With Offset

      \(y = \exp{(-0.5*{({(ln{(x)}-a)}/b)}^{2})} / {(b*x)} + \text{Offset}\)

      [a, b, Offset]

  • Logistic PDF Based (logistic_pdf)

    • Logistic PDF Based

      \(y = \exp{({(a-x)}/b)} / {(b*{(1.0+\exp{({(a-x)}/b)})}^{2})}\)

      [a, b]

    • Logistic PDF Based With Offset

      \(y = \exp{({(a-x)}/b)} / {(b*{(1.0+\exp{({(a-x)}/b)})}^{2})} + \text{Offset}\)

      [a, b, Offset]

  • Pareto PDF Based (pareto_pdf)

    • Pareto PDF Based

      \(y = b * a^{b} / x^{{(b+1.0)}}\)

      [a, b]

    • Pareto PDF Based With Offset

      \(y = b * a^{b} / x^{{(b+1.0)}} + \text{Offset}\)

      [a, b, Offset]

  • Power PDF Based (power_pdf)

    • Power PDF Based

      \(y = {(a/b)} * {(x/b)}^{{(a-1.0)}}\)

      [a, b]

    • Power PDF Based With Offset

      \(y = {(a/b)} * {(x/b)}^{{(a-1.0)}} + \text{Offset}\)

      [a, b, Offset]

  • Rayleigh CDF Based A (rayleigh_cdf_a)

    • Rayleigh CDF Based A

      \(y = 1.0 - \exp{(-x^{2}/{(2.0*a^{2})})}\)

      [a]

    • Rayleigh CDF Based A With Offset

      \(y = 1.0 - \exp{(-x^{2}/{(2.0*a^{2})})} + \text{Offset}\)

      [a, Offset]

  • Rayleigh CDF Based B (rayleigh_cdf_b)

    • Rayleigh CDF Based B

      \(y = b * \exp{(-x^{2}/{(2.0*a^{2})})}\)

      [a, b]

    • Rayleigh CDF Based B With Offset

      \(y = b * \exp{(-x^{2}/{(2.0*a^{2})})} + \text{Offset}\)

      [a, b, Offset]

  • Rayleigh PDF Based (rayleigh_pdf)

    • Rayleigh PDF Based

      \(y = {(x/a^{2})} *\exp{(-x^{2}/{(2.0*a^{2})})}\)

      [a]

    • Rayleigh PDF Based With Offset

      \(y = {(x/a^{2})} *\exp{(-x^{2}/{(2.0*a^{2})})} + \text{Offset}\)

      [a, Offset]

  • Rayleigh PDF Based Scaled (rayleigh_pdf_scaled)

    • Rayleigh PDF Based Scaled

      \(y = Scale * {(x/a^{2})} *\exp{(-x^{2}/{(2.0*a^{2})})}\)

      [a, Scale]

    • Rayleigh PDF Based Scaled With Offset

      \(y = Scale * {(x/a^{2})} *\exp{(-x^{2}/{(2.0*a^{2})})} + \text{Offset}\)

      [a, Scale, Offset]

  • Reciprocal CDF Based (reciprocal_cdf)

    • Reciprocal CDF Based

      \(y = ln{(a/x)} / ln{(a/b)}\)

      [a, b]

    • Reciprocal CDF Based With Offset

      \(y = ln{(a/x)} / ln{(a/b)} + \text{Offset}\)

      [a, b, Offset]

  • Sech CDF Based (sech_cdf)

    • Sech CDF Based

      \(y = c * atan{(\exp{({(x-a)}/b)})}\)

      [a, b, c]

    • Sech CDF Based With Offset

      \(y = c * atan{(\exp{({(x-a)}/b)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Weibull CDF Based A (weibull_cdf_a)

    • Weibull CDF Based A

      \(y = 1.0 / \exp{({({(x-a)}/b)}^{c})}\)

      [a, b, c]

    • Weibull CDF Based A With Offset

      \(y = 1.0 / \exp{({({(x-a)}/b)}^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Weibull CDF Based B (weibull_cdf_b)

    • Weibull CDF Based B

      \(y = d / \exp{({({(x-a)}/b)}^{c})}\)

      [a, b, c, d]

    • Weibull CDF Based B With Offset

      \(y = d / \exp{({({(x-a)}/b)}^{c})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Weibull PDF Based (weibull_pdf)

    • Weibull PDF Based

      \(y = {(c/b)} * {({(x-a)}/b)}^{{(c-1.0)}} /\exp{({({(x-a)}/b)}^{c})}\)

      [a, b, c]

    • Weibull PDF Based With Offset

      \(y = {(c/b)} * {({(x-a)}/b)}^{{(c-1.0)}} /\exp{({({(x-a)}/b)}^{c})} + \text{Offset}\)

      [a, b, c, Offset]

Engineering

  • Dispersion Optical (DispersionOptical)

    • Dispersion Optical

      \(n^{2}{(x)} = A1 + A2*x^{2} +A3/x^{2} + A4/x^{4}\)

      [A1, A2, A3, A4]

  • Dispersion Optical Square Root (DispersionOpticalSqrt)

    • Dispersion Optical Square Root

      \(n = {(A1 + A2*x^{2} + A3/x^{2} +A4/x^{4})}^{0.5}\)

      [A1, A2, A3, A4]

  • Electron Beam Lithography Point Spread (ElectronBeamLithographyPointSpread)

    • Electron Beam Lithography Point Spread

      \(y = a*\exp{(-b*x)} + c*\exp{(-{(x-d)}^{2} /f^{2})} + g*\exp{(-{(x-h)}^{2} /i^{2})} + j*\exp{(-{(x-k)}^{2} /l^{2})}\)

      [a, b, c, d, f, g, h, i, j, k, l]

    • Electron Beam Lithography Point Spread With Offset

      \(y = a*\exp{(-b*x)} + c*\exp{(-{(x-d)}^{2} /f^{2})} + g*\exp{(-{(x-h)}^{2} /i^{2})} + j*\exp{(-{(x-k)}^{2} /l^{2})} + \text{Offset}\)

      [a, b, c, d, f, g, h, i, j, k, l, Offset]

  • Extended Steinhart-Hart (Extended_Steinhart_Hart)

    • Extended Steinhart-Hart

      \(1/T = A + Bln{(R)} + C{(ln{(R)})}^{2} +D{(ln{(R)})}^{3}\)

      [A, B, C, D]

  • Graeme Paterson Electric Motor (GraemePatersonElectricMotor)

    • Graeme Paterson Electric Motor

      \(y = A*\exp{(-b*t)}*cos{(omega*t + phi)} + A2*\exp{(-b2*t)}\)

      [A, b, omega, phi, A2, b2]

    • Graeme Paterson Electric Motor With Offset

      \(y = A*\exp{(-b*t)}*cos{(omega*t + phi)} + A2*\exp{(-b2*t)} + \text{Offset}\)

      [A, b, omega, phi, A2, b2, Offset]

  • Klimpel Kinetics Flotation A (KlimpelFlotationA)

    • Klimpel Kinetics Flotation A

      \(y = a * {(1 - {(1 - \exp{(-b*x)})} / {(b*x)})}\)

      [a, b]

    • Klimpel Kinetics Flotation A With Offset

      \(y = a * {(1 - {(1 - \exp{(-b*x)})} / {(b*x)})} + \text{Offset}\)

      [a, b, Offset]

  • Maxwell - Wiechert 1 (MaxwellWiechert_1)

    • Maxwell - Wiechert 1

      \(y = a1*\exp{(-X/Tau1)}\)

      [a1, Tau1]

    • Maxwell - Wiechert 1 With Offset

      \(y = a1*\exp{(-X/Tau1)} + \text{Offset}\)

      [a1, Tau1, Offset]

  • Maxwell - Wiechert 2 (MaxwellWiechert_2)

    • Maxwell - Wiechert 2

      \(y = a1*\exp{(-X/Tau1)} + a2*\exp{(-X/Tau2)}\)

      [a1, Tau1, a2, Tau2]

    • Maxwell - Wiechert 2 With Offset

      \(y = a1*\exp{(-X/Tau1)} + a2*\exp{(-X/Tau2)} + \text{Offset}\)

      [a1, Tau1, a2, Tau2, Offset]

  • Maxwell - Wiechert 3 (MaxwellWiechert_3)

    • Maxwell - Wiechert 3

      \(y = a1*\exp{(-X/Tau1)} + a2*\exp{(-X/Tau2)} + a3*\exp{(-X/Tau3)}\)

      [a1, Tau1, a2, Tau2, a3, Tau3]

    • Maxwell - Wiechert 3 With Offset

      \(y = a1*\exp{(-X/Tau1)} + a2*\exp{(-X/Tau2)} + a3*\exp{(-X/Tau3)} + \text{Offset}\)

      [a1, Tau1, a2, Tau2, a3, Tau3, Offset]

  • Maxwell - Wiechert 4 (MaxwellWiechert_4)

    • Maxwell - Wiechert 4

      \(y = a1*\exp{(-X/Tau1)} + a2*\exp{(-X/Tau2)} + a3*\exp{(-X/Tau3)} +a4*\exp{(-X/Tau4)}\)

      [a1, Tau1, a2, Tau2, a3, Tau3, a4, Tau4]

    • Maxwell - Wiechert 4 With Offset

      \(y = a1*\exp{(-X/Tau1)} + a2*\exp{(-X/Tau2)} + a3*\exp{(-X/Tau3)} +a4*\exp{(-X/Tau4)} + \text{Offset}\)

      [a1, Tau1, a2, Tau2, a3, Tau3, a4, Tau4, Offset]

  • Modified Arps Well Production (ModifiedArpsWellProduction)

    • Modified Arps Well Production

      \(y = {(qi\_x/{({(1.0-b\_x)}*Di\_x)})} *{(1.0-{({(1.0+b\_x*Di\_x*x)}^{(1.0-1.0/b\_x)})})}\)

      [qi_x, b_x, Di_x]

    • Modified Arps Well Production With Offset

      \(y = {(qi\_x/{({(1.0-b\_x)}*Di\_x)})} *{(1.0-{({(1.0+b\_x*Di\_x*x)}^{(1.0-1.0/b\_x)})})} + \text{Offset}\)

      [qi_x, b_x, Di_x, Offset]

  • Ramberg-Osgood (Ramberg_Osgood)

    • Ramberg-Osgood

      \(y = {(Stress / Youngs\_Modulus)} + {(Stress/K)}^{{(1.0/n)}}\)

      [Youngs_Modulus, K, n]

    • Ramberg-Osgood With Offset

      \(y = {(Stress / Youngs\_Modulus)} + {(Stress/K)}^{{(1.0/n)}} +\text{Offset}\)

      [Youngs_Modulus, K, n, Offset]

  • Reciprocal Extended Steinhart-Hart (Reciprocal_Extended_Steinhart_Hart)

    • Reciprocal Extended Steinhart-Hart

      \(T = 1.0 / {(A + Bln{(R)} + C{(ln{(R)})}^{2} +D{(ln{(R)})}^{3})}\)

      [A, B, C, D]

    • Reciprocal Extended Steinhart-Hart With Offset

      \(T = 1.0 / {(A + Bln{(R)} + C{(ln{(R)})}^{2} +D{(ln{(R)})}^{3})} + \text{Offset}\)

      [A, B, C, D, Offset]

  • Reciprocal Steinhart-Hart (Reciprocal_Steinhart_Hart)

    • Reciprocal Steinhart-Hart

      \(T = 1.0 / {(A + Bln{(R)} + C{(ln{(R)})}^{3})}\)

      [A, B, C]

    • Reciprocal Steinhart-Hart With Offset

      \(T = 1.0 / {(A + Bln{(R)} + C{(ln{(R)})}^{3})} + \text{Offset}\)

      [A, B, C, Offset]

  • Sellmeier Optical (SellmeierOptical)

    • Sellmeier Optical

      \(n^{2}{(x)} = 1 + {(B1x^{2})}/{(x^{2}-C1)} + {(B2x^{2})}/{(x^{2}-C2)} + {(B3x^{2})}/{(x^{2}-C3)}\)

      [B1, C1, B2, C2, B3, C3]

    • Sellmeier Optical With Offset

      \(n^{2}{(x)} = 1 + {(B1x^{2})}/{(x^{2}-C1)} + {(B2x^{2})}/{(x^{2}-C2)} + {(B3x^{2})}/{(x^{2}-C3)} + \text{Offset}\)

      [B1, C1, B2, C2, B3, C3, Offset]

  • Sellmeier Optical Square Root (SellmeierOpticalSqrt)

    • Sellmeier Optical Square Root

      \(n = {(1 + {(B1 x^{2})}/{(x^{2}-C1)} + {(B2x^{2})}/{(x^{2}-C2)} + {(B3x^{2})}/{(x^{2}-C3)})}^{0.5}\)

      [B1, C1, B2, C2, B3, C3]

    • Sellmeier Optical Square Root With Offset

      \(n = {(1 + {(B1 x^{2})}/{(x^{2}-C1)} + {(B2x^{2})}/{(x^{2}-C2)} + {(B3x^{2})}/{(x^{2}-C3)})}^{0.5} +\text{Offset}\)

      [B1, C1, B2, C2, B3, C3, Offset]

  • Steinhart-Hart (Steinhart_Hart)

    • Steinhart-Hart

      \(1/T = A + Bln{(R)} + C{(ln{(R)})}^{3}\)

      [A, B, C]

  • VanDeemter Chromatography (VanDeemterChromatography)

    • VanDeemter Chromatography

      \(y = a + b/x + cx\)

      [a, b, c]

Exponential

  • Asymptotic Exponential A (AsymptoticExponentialA)

    • Asymptotic Exponential A

      \(y = 1.0 - a^{x}\)

      [a]

    • Asymptotic Exponential A With Offset

      \(y = 1.0 - a^{x} + \text{Offset}\)

      [a, Offset]

  • Asymptotic Exponential A Transform (AsymptoticExponentialA_Transform)

    • Asymptotic Exponential A Transform

      \(y = 1.0 - a^{bx + c}\)

      [a, b, c]

    • Asymptotic Exponential A Transform With Offset

      \(y = 1.0 - a^{bx + c} + \text{Offset}\)

      [a, b, c, Offset]

  • Asymptotic Exponential B (AsymptoticExponentialB)

    • Asymptotic Exponential B

      \(y = a * {(1.0 - \exp{(bx)})}\)

      [a, b]

    • Asymptotic Exponential B With Offset

      \(y = a * {(1.0 - \exp{(bx)})} + \text{Offset}\)

      [a, b, Offset]

  • Bruno Torremans Quadruple Exponential (BrunoTorremansQuadrupleExponential)

    • Bruno Torremans Quadruple Exponential

      \(y = \text{Offset} - R1 * \exp{(-x/T1)} + R2 * \exp{(-x/T2)} + R3 * \exp{(-x/T3)} + R4 *\exp{(-x/T4)}\)

      [R1, R2, R3, R4, T1, T2, T3, T4, Offset]

  • Double Asymptotic Exponential B (DoubleAsymptoticExponentialB)

    • Double Asymptotic Exponential B

      \(y = a * {(1.0 - \exp{(bx)})} + c * {(1.0 - \exp{(dx)})}\)

      [a, b, c, d]

    • Double Asymptotic Exponential B With Offset

      \(y = a * {(1.0 - \exp{(bx)})} + c * {(1.0 - \exp{(dx)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Double Exponential (DoubleExponential)

    • Double Exponential

      \(y = a * \exp{(bx)} + c * \exp{(dx)}\)

      [a, b, c, d]

    • Double Exponential With Offset

      \(y = a * \exp{(bx)} + c * \exp{(dx)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Exponential (Exponential)

    • Exponential

      \(y = a * \exp{(bx)}\)

      [a, b]

    • Exponential With Offset

      \(y = a * \exp{(bx)} + \text{Offset}\)

      [a, b, Offset]

  • Hocket-Sherby (Hocket_Sherby)

    • Hocket-Sherby

      \(y = b - {(b-a)} * \exp{(-c * {(x^{d})})}\)

      [a, b, c, d]

  • Hoerl (Hoerl)

    • Hoerl

      \(y = x^{a} * \exp{(x)}\)

      [a]

    • Hoerl With Offset

      \(y = x^{a} * \exp{(x)} + \text{Offset}\)

      [a, Offset]

  • Hoerl Transform (Hoerl_Transform)

    • Hoerl Transform

      \(y = {(bx + c)}^{a} * \exp{(bx + c)}\)

      [a, b, c]

    • Hoerl Transform With Offset

      \(y = {(bx + c)}^{a} * \exp{(bx + c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Inverted Exponential (InvExponential)

    • Inverted Exponential

      \(y = a * \exp{(b/x)}\)

      [a, b]

    • Inverted Exponential With Offset

      \(y = a * \exp{(b/x)} + \text{Offset}\)

      [a, b, Offset]

  • Inverted Offset Exponential (InvertedOffsetExponential)

    • Inverted Offset Exponential

      \(y = a * \exp{(b/{(x+c)})}\)

      [a, b, c]

    • Inverted Offset Exponential With Offset

      \(y = a * \exp{(b/{(x+c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Jonathan Litz Custom Exponential (JonathanLitzCustomExponential)

    • Jonathan Litz Custom Exponential

      \(y = a + b * x + c * \exp{(-d * x)} - c * x * \exp{(-d * x)}\)

      [a, b, c, d]

  • Lake Nganoke Samples Exponential (LakeNganokeSamplesExponential)

    • Lake Nganoke Samples Exponential

      \(y = C/{(1.0 + \exp{({(x-A)}/B)})} + D * \exp{({(x-B)}/E)}\)

      [A, B, C, D, E]

    • Lake Nganoke Samples Exponential With Offset

      \(y = C/{(1.0 + \exp{({(x-A)}/B)})} + D * \exp{({(x-B)}/E)} + \text{Offset}\)

      [A, B, C, D, E, Offset]

  • Offset Exponential (OffsetExponential)

    • Offset Exponential

      \(y = a * \exp{(bx + c)}\)

      [a, b, c]

    • Offset Exponential With Offset

      \(y = a * \exp{(bx + c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Scaled Exponential (ScaledExponential)

    • Scaled Exponential

      \(y = a * \exp{(x)}\)

      [a]

    • Scaled Exponential With Offset

      \(y = a * \exp{(x)} + \text{Offset}\)

      [a, Offset]

  • Shifted Exponential (ShiftedExponential)

    • Shifted Exponential

      \(y = a * \exp{(x + b)}\)

      [a, b]

    • Shifted Exponential With Offset

      \(y = a * \exp{(x + b)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Exponential (SimpleExponential)

    • Simple Exponential

      \(y = a^{x}\)

      [a]

    • Simple Exponential With Offset

      \(y = a^{x} + \text{Offset}\)

      [a, Offset]

  • Steve Battison Exponential A (SteveBattisonExponentialA)

    • Steve Battison Exponential A

      \(y = \exp{({(a + bx)} / {(c + dx)})}\)

      [a, b, c, d]

    • Steve Battison Exponential A With Offset

      \(y = \exp{({(a + bx)} / {(c + dx)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Steve Battison Exponential B (SteveBattisonExponentialB)

    • Steve Battison Exponential B

      \(y = a * \exp{({(b + cx)} / {(d + fx)})}\)

      [a, b, c, d, f]

    • Steve Battison Exponential B With Offset

      \(y = a * \exp{({(b + cx)} / {(d + fx)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Stirling (Stirling)

    • Stirling

      \(y = a * {(\exp{(bx)} - 1.0)} / b\)

      [a, b]

    • Stirling With Offset

      \(y = a * {(\exp{(bx)} - 1.0)} / b + \text{Offset}\)

      [a, b, Offset]

  • Triple Exponential (TripleExponential)

    • Triple Exponential

      \(y = a * \exp{(bx)} + c * \exp{(dx)} + f * \exp{(gx)}\)

      [a, b, c, d, f, g]

    • Triple Exponential With Offset

      \(y = a * \exp{(bx)} + c * \exp{(dx)} + f * \exp{(gx)} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Standard Vapor Pressure (VaporPressure)

    • Standard Vapor Pressure

      \(y = \exp{(a + {(b/x)} + c*ln{(x)})}\)

      [a, b, c]

    • Standard Vapor Pressure With Offset

      \(y = \exp{(a + {(b/x)} + c*ln{(x)})} + \text{Offset}\)

      [a, b, c, Offset]

FourierSeries

  • 1 Term (Scaled X) (ScaledX_1Term)

    • 1 Term (Scaled X)

      \(y = a0 + a1*sin{(c1*x)}+b1*cos{(c1*x)}\)

      [a0, a1, b1, c1]

  • 1 Term Standard (Standard_1Term)

    • 1 Term Standard

      \(y = a0 + a1*sin{(x)}+b1*cos{(x)}\)

      [a0, a1, b1]

  • 2 Term Standard (Standard_2Term)

    • 2 Term Standard

      \(y = a0 + a1*sin{(x)}+b1*cos{(x)} + a2*sin{(2x)}+b2*cos{(2x)}\)

      [a0, a1, b1, a2, b2]

  • 3 Term Standard (Standard_3Term)

    • 3 Term Standard

      \(y = a0 + a1*sin{(x)}+b1*cos{(x)} + a2*sin{(2x)}+b2*cos{(2x)} +a3*sin{(3x)}+b3*cos{(3x)}\)

      [a0, a1, b1, a2, b2, a3, b3]

  • 4 Term Standard (Standard_4Term)

    • 4 Term Standard

      \(y = a0 + a1*sin{(x)}+b1*cos{(x)} + a2*sin{(2x)}+b2*cos{(2x)} +a3*sin{(3x)}+b3*cos{(3x)} + a4*sin{(4x)}+b4*cos{(4x)}\)

      [a0, a1, b1, a2, b2, a3, b3, a4, b4]

LegendrePolynomial

  • Legendre Polynomial G - Eighth Degree (EighthDegreeLegendrePolynomial)

    • Legendre Polynomial G - Eighth Degree

      \(y = a + bx + cP_{2} + dP_{3} +fP_{4} + gP_{5} + hP_{6} +iP_{7} + jP_{8}\)

      [a, b, c, d, f, g, h, i, j]

  • Legendre Polynomial D - Fifth Degree (FifthDegreeLegendrePolynomial)

    • Legendre Polynomial D - Fifth Degree

      \(y = a + bx + cP_{2} + dP_{3} +fP_{4} + gP_{5}\)

      [a, b, c, d, f, g]

  • Legendre Polynomial C - Fourth Degree (FourthDegreeLegendrePolynomial)

    • Legendre Polynomial C - Fourth Degree

      \(y = a + bx + cP_{2} + dP_{3} +fP_{4}\)

      [a, b, c, d, f]

  • Gamma Ray Angular Distribution (degrees) A (GammaRayAngularDistributionDegreesA)

    • Gamma Ray Angular Distribution (degrees) A

      \(y = A0 + A2 * P_{2}{(cos{(theta)})}\)

      [A0, A2]

  • Gamma Ray Angular Distribution (degrees) B (GammaRayAngularDistributionDegreesB)

    • Gamma Ray Angular Distribution (degrees) B

      \(y = A0 + A2 * P_{2}{(cos{(theta)})} + A4 *P_{4}{(cos{(theta)})}\)

      [A0, A2, A4]

  • Gamma Ray Angular Distribution (radians) A (GammaRayAngularDistributionRadiansA)

    • Gamma Ray Angular Distribution (radians) A

      \(y = A0 + A2 * P_{2}{(cos{(theta)})}\)

      [A0, A2]

  • Gamma Ray Angular Distribution (radians) B (GammaRayAngularDistributionRadiansB)

    • Gamma Ray Angular Distribution (radians) B

      \(y = A0 + A2 * P_{2}{(cos{(theta)})} + A4 *P_{4}{(cos{(theta)})}\)

      [A0, A2, A4]

  • Legendre Polynomial H - Ninth Degree (NinthDegreeLegendrePolynomial)

    • Legendre Polynomial H - Ninth Degree

      \(y = a + bx + cP_{2} + dP_{3} +fP_{4} + gP_{5} + hP_{6} +iP_{7} + jP_{8} + kP_{9}\)

      [a, b, c, d, f, g, h, i, j, k]

  • Legendre Polynomial A - Second Degree (SecondDegreeLegendrePolynomial)

    • Legendre Polynomial A - Second Degree

      \(y = a + bx + cP_{2}\)

      [a, b, c]

  • Legendre Polynomial F - Seventh Degree (SeventhDegreeLegendrePolynomial)

    • Legendre Polynomial F - Seventh Degree

      \(y = a + bx + cP_{2} + dP_{3} +fP_{4} + gP_{5} + hP_{6} +iP_{7}\)

      [a, b, c, d, f, g, h, i]

  • Legendre Polynomial E - Sixth Degree (SixthDegreeLegendrePolynomial)

    • Legendre Polynomial E - Sixth Degree

      \(y = a + bx + cP_{2} + dP_{3} +fP_{4} + gP_{5} + hP_{6}\)

      [a, b, c, d, f, g, h]

  • Legendre Polynomial I - Tenth Degree (TenthDegreeLegendrePolynomial)

    • Legendre Polynomial I - Tenth Degree

      \(y = a + bx + cP_{2} + dP_{3} +fP_{4} + gP_{5} + hP_{6} +iP_{7} + jP_{8} + kP_{9} +mP_{10}\)

      [a, b, c, d, f, g, h, i, j, k, m]

  • Legendre Polynomial B - Third Degree (ThirdDegreeLegendrePolynomial)

    • Legendre Polynomial B - Third Degree

      \(y = a + bx + cP_{2} + dP_{3}\)

      [a, b, c, d]

Logarithmic

  • Base 10 Logarithmic (Base10Logarithmic)

    • Base 10 Logarithmic

      \(y = a + b*log_{10}{(x)}\)

      [a, b]

  • Bradley (Bradley)

    • Bradley

      \(y = a * ln{(-b * ln{(x)})}\)

      [a, b]

    • Bradley With Offset

      \(y = a * ln{(-b * ln{(x)})} + \text{Offset}\)

      [a, b, Offset]

  • Bradley Transform (BradleyTransform)

    • Bradley Transform

      \(y = a * ln{(-b * ln{(cx + d)})}\)

      [a, b, c, d]

    • Bradley Transform With Offset

      \(y = a * ln{(-b * ln{(cx + d)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Crystal Resonator Ageing MIL-PRF-55310E (CrystalResonatorAgeing)

    • Crystal Resonator Ageing MIL-PRF-55310E

      \(y = A{(ln{(Bt + 1)})} + f0\)

      [A, B, f0]

  • Cubic Logarithmic (CubicLogarithmic)

    • Cubic Logarithmic

      \(y = a + b*ln{(x)} + c*ln{(x)}^{2} +d*ln{(x)}^{3}\)

      [a, b, c, d]

  • Cubic Logarithmic Scaled (CubicLogarithmicScaled)

    • Cubic Logarithmic Scaled

      \(y = a + b*ln{(f*x)} + c*ln{(f*x)}^{2} +d*ln{(f*x)}^{3}\)

      [a, b, c, d, f]

  • Cubic Logarithmic Transform (CubicLogarithmicTransform)

    • Cubic Logarithmic Transform

      \(y = a + b*ln{(f*x+g)} + c*ln{(f*x+g)}^{2} +d*ln{(f*x+g)}^{3}\)

      [a, b, c, d, f, g]

  • Linear Logarithmic (LinearLogarithmic)

    • Linear Logarithmic

      \(y = a + b*ln{(x)}\)

      [a, b]

  • Linear Logarithmic Scaled (LinearLogarithmicScaled)

    • Linear Logarithmic Scaled

      \(y = a + b*ln{(cx)}\)

      [a, b, c]

  • Linear Logarithmic Shifted (LinearLogarithmicShifted)

    • Linear Logarithmic Shifted

      \(y = a + b*ln{(c+x)}\)

      [a, b, c]

  • Linear Logarithmic Transform (LinearLogarithmicTransform)

    • Linear Logarithmic Transform

      \(y = a + b*ln{(cx+d)}\)

      [a, b, c, d]

  • Quadratic Logarithmic (QuadraticLogarithmic)

    • Quadratic Logarithmic

      \(y = a + b*ln{(x)} + c*ln{(x)}^{2}\)

      [a, b, c]

  • Quadratic Logarithmic Scaled (QuadraticLogarithmicScaled)

    • Quadratic Logarithmic Scaled

      \(y = a + b*ln{(dx)} + c*ln{(dx)}^{2}\)

      [a, b, c, d]

  • Quadratic Logarithmic Transform (QuadraticLogarithmicTransform)

    • Quadratic Logarithmic Transform

      \(y = a + b*ln{(dx+f)} + c*ln{(dx+f)}^{2}\)

      [a, b, c, d, f]

  • Quartic Logarithmic (QuarticLogarithmic)

    • Quartic Logarithmic

      \(y = a + b*ln{(x)} + c*ln{(x)}^{2} +d*ln{(x)}^{3} + f*ln{(x)}^{4}\)

      [a, b, c, d, f]

  • Quartic Logarithmic Scaled (QuarticLogarithmicScaled)

    • Quartic Logarithmic Scaled

      \(y = a + b*ln{(h*x)} + c*ln{(h*x)}^{2} +d*ln{(h*x)}^{3} + f*ln{(h*x)}^{4}\)

      [a, b, c, d, f, g]

  • Quartic Logarithmic Transform (QuarticLogarithmicTransform)

    • Quartic Logarithmic Transform

      \(y = a + b*ln{(g*x+h)} + c*ln{(g*x+h)}^{2} +d*ln{(g*x+h)}^{3} + f*ln{(g*x+h)}^{4}\)

      [a, b, c, d, f, g, h]

  • Quintic Logarithmic (QuinticLogarithmic)

    • Quintic Logarithmic

      \(y = a + b*ln{(x)} + c*ln{(x)}^{2} +d*ln{(x)}^{3} + f*ln{(x)}^{4} +g*ln{(x)}^{5}\)

      [a, b, c, d, f, g]

  • Quintic Logarithmic Scaled (QuinticLogarithmicScaled)

    • Quintic Logarithmic Scaled

      \(y = a + b*ln{(h*x)} + c*ln{(h*x)}^{2} +d*ln{(h*x)}^{3} + f*ln{(h*x)}^{4} +g*ln{(h*x)}^{4}\)

      [a, b, c, d, f, g, h]

  • Quintic Logarithmic Transform (QuinticLogarithmicTransform)

    • Quintic Logarithmic Transform

      \(y = a + b*ln{(h*x+i)} + c*ln{(h*x+i)}^{2} +d*ln{(h*x+i)}^{3} + f*ln{(h*x+i)}^{4} +g*ln{(h*x+i)}^{5}\)

      [a, b, c, d, f, g, h, i]

Miscellaneous

  • Arrhenius Rate Constant Law (ArrheniusRateConstantLaw)

    • Arrhenius Rate Constant Law

      \(y = a * \exp{(-b/x)}\)

      [a, b]

    • Arrhenius Rate Constant Law With Offset

      \(y = a * \exp{(-b/x)} + \text{Offset}\)

      [a, b, Offset]

  • Arrhenius Rate Constant Law Stretched (ArrheniusRateConstantLawStretched)

    • Arrhenius Rate Constant Law Stretched

      \(y = a * \exp{(-pow{(b/x, c)})}\)

      [a, b, c]

    • Arrhenius Rate Constant Law Stretched With Offset

      \(y = a * \exp{(-pow{(b/x, c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Bleasdale-Nelder (Bleasdale_Nelder)

    • Bleasdale-Nelder

      \(y = {(a + bx)}^{-c}\)

      [a, b, c]

    • Bleasdale-Nelder With Offset

      \(y = {(a + bx)}^{-c} + \text{Offset}\)

      [a, b, c, Offset]

  • Catenary (Catenary)

    • Catenary

      \(y = a * cosh{(x / a)}\)

      [a]

    • Catenary With Offset

      \(y = a * cosh{(x / a)} + \text{Offset}\)

      [a, Offset]

  • Catenary Transform (CatenaryTransform)

    • Catenary Transform

      \(y = a * cosh{({(bx + c)} / a)}\)

      [a, b, c]

    • Catenary Transform With Offset

      \(y = a * cosh{({(bx + c)} / a)} + \text{Offset}\)

      [a, b, c, Offset]

  • Cissoid Of Diocles (CissoidOfDiocles)

    • Cissoid Of Diocles

      \(y = a{(x^{3} / {(2b-x)})}^{0.5}\)

      [a, b]

    • Cissoid Of Diocles With Offset

      \(y = a{(x^{3} / {(2b-x)})}^{0.5} + \text{Offset}\)

      [a, b, Offset]

  • Cissoid Of Diocles Transform (CissoidOfDioclesTransform)

    • Cissoid Of Diocles Transform

      \(y = a{({(x*c-d)}^{3} / {(2b-{(x*c-d)})})}^{0.5}\)

      [a, b, c, d]

    • Cissoid Of Diocles Transform With Offset

      \(y = a{({(x*c-d)}^{3} / {(2b-{(x*c-d)})})}^{0.5} +\text{Offset}\)

      [a, b, c, d, Offset]

  • Combined Power And Exponential (CombinedPowerAndExponential)

    • Combined Power And Exponential

      \(y = ax^{b} * \exp{(cx)}\)

      [a, b, c]

    • Combined Power And Exponential With Offset

      \(y = ax^{b} * \exp{(cx)} + \text{Offset}\)

      [a, b, c, Offset]

  • David Rodbard NIH (DavidRodbardNIH)

    • David Rodbard NIH

      \(y = d + {(a - d)} / {(1.0 + {(x/c)}^{b})}\)

      [a, b, c, d]

  • Double Langmuir Probe Characteristic (DoubleLangmuirProbeCharacteristic)

    • Double Langmuir Probe Characteristic

      \(y = a * tanh{(bx+c)}\)

      [a, b, c]

    • Double Langmuir Probe Characteristic With Offset

      \(y = a * tanh{(bx+c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Double Rectangular Hyperbola A (DoubleRectangularHyperbolaA)

    • Double Rectangular Hyperbola A

      \(y = ax/{(b+x)} + cx/{(d+x)}\)

      [a, b, c, d]

    • Double Rectangular Hyperbola A With Offset

      \(y = ax/{(b+x)} + cx/{(d+x)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Double Rectangular Hyperbola B (DoubleRectangularHyperbolaB)

    • Double Rectangular Hyperbola B

      \(y = ax/{(b+x)} + cx/{(d+x)} + fx\)

      [a, b, c, d, f]

    • Double Rectangular Hyperbola B With Offset

      \(y = ax/{(b+x)} + cx/{(d+x)} + fx + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Figure Eight Curve (FigureEight)

    • Figure Eight Curve

      \(y = a{(x^{2} -{(x^{4}/b^{2})})}^{0.5}\)

      [a, b]

    • Figure Eight Curve With Offset

      \(y = a{(x^{2} -{(x^{4}/b^{2})})}^{0.5} +\text{Offset}\)

      [a, b, Offset]

  • Figure Eight Curve Transform (FigureEightTransform)

    • Figure Eight Curve Transform

      \(y = a{({(cx+d)}^{2} -{({(cx+d)}^{4}/b^{2})})}^{0.5}\)

      [a, b, c, d]

    • Figure Eight Curve Transform With Offset

      \(y = a{({(cx+d)}^{2} -{({(cx+d)}^{4}/b^{2})})}^{0.5} +\text{Offset}\)

      [a, b, c, d, Offset]

  • Gunary (Gunary)

    • Gunary

      \(y = x / {(a + bx + cx^{0.5})}\)

      [a, b, c]

    • Gunary With Offset

      \(y = x / {(a + bx + cx^{0.5})} + \text{Offset}\)

      [a, b, c, Offset]

  • Hyperbola A Modified (HyperbolaA_Modified)

    • Hyperbola A Modified

      \(y = ax/{(1+bx)}\)

      [a, b]

    • Hyperbola A Modified With Offset

      \(y = ax/{(1+bx)} + \text{Offset}\)

      [a, b, Offset]

  • Hyperbola B Modified (HyperbolaB_Modified)

    • Hyperbola B Modified

      \(y = x/{(a+bx)}\)

      [a, b]

    • Hyperbola B Modified With Offset

      \(y = x/{(a+bx)} + \text{Offset}\)

      [a, b, Offset]

  • Hyperbolic Decay (HyperbolicDecay)

    • Hyperbolic Decay

      \(y = ab/{(b+x)}\)

      [a, b]

    • Hyperbolic Decay With Offset

      \(y = ab/{(b+x)} + \text{Offset}\)

      [a, b, Offset]

  • Karplus NMR Spectroscopy (KarplusNMRSpectroscopy)

    • Karplus NMR Spectroscopy

      \(J{(da)} = Acos^{2}{(da)} + Bcos{(da)} + C\)

      [A, B, C]

  • Karplus NMR Spectroscopy Scaled (KarplusNMRSpectroscopyScaled)

    • Karplus NMR Spectroscopy Scaled

      \(J{(da)} = Acos^{2}{(s * da)} + Bcos{(s * da)} + C\)

      [A, B, C, s]

  • Lame’s Cubic (LamesCubic)

    • Lame’s Cubic

      \(y = {(a^{3} - x^{3})}^{1/3}\)

      [a]

    • Lame’s Cubic With Offset

      \(y = {(a^{3} - x^{3})}^{1/3} +\text{Offset}\)

      [a, Offset]

  • Lame’s Cubic Transform (LamesCubicTransform)

    • Lame’s Cubic Transform

      \(y = {(a^{3} - {(bx +c)}^{3})}^{1/3}\)

      [a, b, c]

    • Lame’s Cubic Transform With Offset

      \(y = {(a^{3} - {(bx +c)}^{3})}^{1/3} + \text{Offset}\)

      [a, b, c, Offset]

  • Miscellaneous 1 (Misc1)

    • Miscellaneous 1

      \(y = 1.0 + a{(1.0 - \exp{(bx)})}\)

      [a, b]

    • Miscellaneous 1 With Offset

      \(y = 1.0 + a{(1.0 - \exp{(bx)})} + \text{Offset}\)

      [a, b, Offset]

  • Morse Potential (MorsePotential)

    • Morse Potential

      \(V = D*{(\exp{(-2*m*{(x-u)})} - 2*\exp{(-m*{(x-u)})})} + offset\)

      [D, m, u, offset]

  • Nelson-Siegel (NelsonSiegel)

    • Nelson-Siegel

      \(y{(m)} = B0 + B1*{({(1-\exp{(-m/t)})}/{(m/t)})} + B2*{({({(1-\exp{(-m/t)})}/{(m/t)})} -\exp{(-m/t)})}\)

      [B0, B1, B2, t]

  • Nelson-Siegel-Svensson (NelsonSiegelSvensson)

    • Nelson-Siegel-Svensson

      \(y{(m)} = B0 + B1*{({(1-\exp{(-m/t)})}/{(m/t)})} + B2*{({({(1-\exp{(-m/t)})}/{(m/t)})} -\exp{(-m/t)})} + B3*{({({(1-\exp{(-m/t2)})}/{(m/t2)})} - \exp{(-m/t2)})}\)

      [B0, B1, B2, B3, t, t2]

  • Niele’s Semi-cubical Parabola (NielesSemicubicalParabola)

    • Niele’s Semi-cubical Parabola

      \(y = {(ax^{2})}^{1.0/3.0}\)

      [a]

    • Niele’s Semi-cubical Parabola With Offset

      \(y = {(ax^{2})}^{1.0/3.0} + \text{Offset}\)

      [a, Offset]

  • Niele’s Semi-cubical Parabola Transform (NielesSemicubicalParabolaTransform)

    • Niele’s Semi-cubical Parabola Transform

      \(y = {(a{(b*x+c)}^{2})}^{1.0/3.0}\)

      [a, b, c]

    • Niele’s Semi-cubical Parabola Transform With Offset

      \(y = {(a{(b*x+c)}^{2})}^{1.0/3.0} + \text{Offset}\)

      [a, b, c, Offset]

  • Pareto A (ParetoA)

    • Pareto A

      \(y = 1 - x^{-a}\)

      [a]

    • Pareto A With Offset

      \(y = 1 - x^{-a} + \text{Offset}\)

      [a, Offset]

  • Pareto B (ParetoB)

    • Pareto B

      \(y = a{(1 - x^{-b})}\)

      [a, b]

    • Pareto B With Offset

      \(y = a{(1 - x^{-b})} + \text{Offset}\)

      [a, b, Offset]

  • Pareto C (ParetoC)

    • Pareto C

      \(y = 1.0 - {(1.0 / {(1 + ax)}^{b})}\)

      [a, b]

    • Pareto C With Offset

      \(y = 1.0 - {(1.0 / {(1 + ax)}^{b})} + \text{Offset}\)

      [a, b, Offset]

  • Pareto D (ParetoD)

    • Pareto D

      \(y = 1.0 - {(1.0 / x^{a})}\)

      [a]

    • Pareto D With Offset

      \(y = 1.0 - {(1.0 / x^{a})} + \text{Offset}\)

      [a, Offset]

  • Pear-shaped Quartic (PearShapedQuartic)

    • Pear-shaped Quartic

      \(y = a{(x^{3}{(b-x)} /c^{2})}^{0.5}\)

      [a, b, c]

    • Pear-shaped Quartic With Offset

      \(y = a{(x^{3}{(b-x)} /c^{2})}^{0.5} + \text{Offset}\)

      [a, b, c, Offset]

  • Pear-shaped Quartic Transform (PearShapedQuarticTransform)

    • Pear-shaped Quartic Transform

      \(y = a{({(dx+f)}^{3}{(b-{(dx+f)})} /c^{2})}^{0.5}\)

      [a, b, c, d, f]

    • Pear-shaped Quartic Transform With Offset

      \(y = a{({(dx+f)}^{3}{(b-{(dx+f)})} /c^{2})}^{0.5} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Physicist Peter’s Custom Equation (PhysicistPeterCustomEquation)

    • Physicist Peter’s Custom Equation

      \(y = A + B*{(X-C)} + 0.5*G*{(X-C)}^2\)

      [A, B, C, G]

  • Physicist Peter’s Pendulum Traversal (PhysicistPeterPendulumTraversal)

    • Physicist Peter’s Pendulum Traversal

      \(y = a*{(x + b)}^{1/2}\)

      [a, b]

    • Physicist Peter’s Pendulum Traversal With Offset

      \(y = a*{(x + b)}^{1/2} + \text{Offset}\)

      [a, b, Offset]

  • Polytrope (Polytrope)

    • Polytrope

      \(y = a / x^{b}\)

      [a, b]

    • Polytrope With Offset

      \(y = a / x^{b} + \text{Offset}\)

      [a, b, Offset]

  • Polytrope Transform (PolytropeTransform)

    • Polytrope Transform

      \(y = a / {(cx + d)}^{b}\)

      [a, b, c, d]

    • Polytrope Transform With Offset

      \(y = a / {(cx + d)}^{b} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Pursuit Curve (PursuitCurve)

    • Pursuit Curve

      \(y = ax^{2} - log{(x)}\)

      [a]

    • Pursuit Curve With Offset

      \(y = ax^{2} - log{(x)} + \text{Offset}\)

      [a, Offset]

  • Pursuit Curve Transform (PursuitCurve_Transform)

    • Pursuit Curve Transform

      \(y = a{(bx + c)}^{2} - log{(bx + c)}\)

      [a, b, c]

    • Pursuit Curve Transform With Offset

      \(y = a{(bx + c)}^{2} - log{(bx + c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Rectangular Hyperbola A (RectangularHyperbolaA)

    • Rectangular Hyperbola A

      \(y = ax/{(b+x)}\)

      [a, b]

    • Rectangular Hyperbola A With Offset

      \(y = ax/{(b+x)} + \text{Offset}\)

      [a, b, Offset]

  • Rectangular Hyperbola B (RectangularHyperbolaB)

    • Rectangular Hyperbola B

      \(y = ax/{(b+x)} + cx\)

      [a, b, c]

    • Rectangular Hyperbola B With Offset

      \(y = ax/{(b+x)} + cx + \text{Offset}\)

      [a, b, c, Offset]

  • Serpentine (Serpentine)

    • Serpentine

      \(y = ax / {(1.0 + bx^{2})}\)

      [a, b]

    • Serpentine With Offset

      \(y = ax / {(1.0 + bx^{2})} + \text{Offset}\)

      [a, b, Offset]

  • Shifted Reciprocal (ShiftedReciprocal)

    • Shifted Reciprocal

      \(y = 1.0 / {(a - x)}\)

      [a]

    • Shifted Reciprocal With Offset

      \(y = 1.0 / {(a - x)} + \text{Offset}\)

      [a, Offset]

  • Square Modified (Square_Modified)

    • Square Modified

      \(y = x^{2} - ax\)

      [a]

    • Square Modified With Offset

      \(y = x^{2} - ax + \text{Offset}\)

      [a, Offset]

  • Square Modified Transform (Square_Modified_Transform)

    • Square Modified Transform

      \(y = {(bx + c)}^{2} - a{(bx + c)}\)

      [a, b, c]

    • Square Modified Transform With Offset

      \(y = {(bx + c)}^{2} - a{(bx + c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Timothy Strobel’s Custom Equation (TimothyStrobelCustomEquation)

    • Timothy Strobel’s Custom Equation

      \(y ={(A-B*X^C)}*{(1-{(0.5+{(arctan{({(X-D)}/E)})}/pi)})}+{(F-G*X^H)}*{(0.5+{(arctan{({(X-D)}/E)})}/pi)}\)

      [A, B, C, D, E, F, G, H]

    • Timothy Strobel’s Custom Equation With Offset

      \(y ={(A-B*X^C)}*{(1-{(0.5+{(arctan{({(X-D)}/E)})}/pi)})}+{(F-G*X^H)}*{(0.5+{(arctan{({(X-D)}/E)})}/pi)}+ \text{Offset}\)

      [A, B, C, D, E, F, G, H, Offset]

  • Transition State Rate Constant Law (TransitionStateRateConstantLaw)

    • Transition State Rate Constant Law

      \(y = ax^{b} * \exp{(-c/x)}\)

      [a, b, c]

    • Transition State Rate Constant Law With Offset

      \(y = ax^{b} * \exp{(-c/x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Trisectrix Of Maclaurin (TrisectrixOfMaclaurin)

    • Trisectrix Of Maclaurin

      \(y = a{(x^{2}{(3b-x)} / {(b+x)})}^{0.5}\)

      [a, b]

    • Trisectrix Of Maclaurin With Offset

      \(y = a{(x^{2}{(3b-x)} / {(b+x)})}^{0.5} + \text{Offset}\)

      [a, b, Offset]

  • Trisectrix Of Maclaurin Transform (TrisectrixOfMaclaurinTransform)

    • Trisectrix Of Maclaurin Transform

      \(y = a{({(cx+d)}^{2}{(3b-{(cx+d)})} /{(b+{(cx+d)})})}^{0.5}\)

      [a, b, c, d]

    • Trisectrix Of Maclaurin Transform With Offset

      \(y = a{({(cx+d)}^{2}{(3b-{(cx+d)})} /{(b+{(cx+d)})})}^{0.5} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Witch Of Maria Agnesi A (WitchOfAgnesiA)

    • Witch Of Maria Agnesi A

      \(y = 8a^{3} / {(x^{2} +4a^{2})}\)

      [a]

    • Witch Of Maria Agnesi A With Offset

      \(y = 8a^{3} / {(x^{2} +4a^{2})} + \text{Offset}\)

      [a, Offset]

  • Witch Of Maria Agnesi B (WitchOfAgnesiB)

    • Witch Of Maria Agnesi B

      \(y = a^{3} / {(x^{2} + a^{2})}\)

      [a]

    • Witch Of Maria Agnesi B With Offset

      \(y = a^{3} / {(x^{2} + a^{2})}+ \text{Offset}\)

      [a, Offset]

  • Witch Of Maria Agnesi C (WitchOfAgnesiC)

    • Witch Of Maria Agnesi C

      \(y = a^{3} / {({(x * b + c)}^{2} +a^{2})}\)

      [a, b, c]

    • Witch Of Maria Agnesi C With Offset

      \(y = a^{3} / {({(x * b + c)}^{2} +a^{2})} + \text{Offset}\)

      [a, b, c, Offset]

NIST

  • NIST Bennett5 (NIST_Bennett5)

    • NIST Bennett5

      \(y = a * {(b+x)}^{-1/c}\)

      [a, b, c]

    • NIST Bennett5 With Offset

      \(y = a * {(b+x)}^{-1/c} + \text{Offset}\)

      [a, b, c, Offset]

  • NIST BoxBOD (NIST_BoxBOD)

    • NIST BoxBOD

      \(y = a * {(1.0-\exp{(-b*x)})}\)

      [a, b]

    • NIST BoxBOD With Offset

      \(y = a * {(1.0-\exp{(-b*x)})} + \text{Offset}\)

      [a, b, Offset]

  • NIST Chwirut (NIST_Chwirut)

    • NIST Chwirut

      \(y = \exp{(-a*x)} / {(b + c*x)}\)

      [a, b, c]

    • NIST Chwirut With Offset

      \(y = \exp{(-a*x)} / {(b + c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • NIST DanWood (NIST_DanWood)

    • NIST DanWood

      \(y = a*x^{b}\)

      [a, b]

    • NIST DanWood With Offset

      \(y = a*x^{b} + \text{Offset}\)

      [a, b, Offset]

  • NIST ENSO (NIST_ENSO)

    • NIST ENSO

      \(y = a + b*cos{(2*pi*x/12)} + c*sin{(2*pi*x/12)} + f*cos{(2*pi*x/d)} +g*sin{(2*pi*x/d)} + i*cos{(2*pi*x/h)} + j*sin{(2*pi*x/h)}\)

      [a, b, c, d, f, g, h, i, j]

  • NIST Eckerle4 (NIST_Eckerle4)

    • NIST Eckerle4

      \(y = {(a/b)} * \exp{(-0.5*{({(x-c)}/b)}^{2})}\)

      [a, b, c]

    • NIST Eckerle4 With Offset

      \(y = {(a/b)} * \exp{(-0.5*{({(x-c)}/b)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • NIST Gauss (NIST_Gauss)

    • NIST Gauss

      \(y = a*\exp{(-b*x)} + c*\exp{(-{(x-d)}^{2} /f^{2})} + g*\exp{(-{(x-h)}^{2} /i^{2})}\)

      [a, b, c, d, f, g, h, i]

    • NIST Gauss With Offset

      \(y = a*\exp{(-b*x)} + c*\exp{(-{(x-d)}^{2} /f^{2})} + g*\exp{(-{(x-h)}^{2} /i^{2})} + \text{Offset}\)

      [a, b, c, d, f, g, h, i, Offset]

  • NIST Hahn (NIST_Hahn)

    • NIST Hahn

      \(y = {(a + b*x + c*x^{2} + d*x^{3})} / {(1.0 +f*x + g*x^{2} + h*x^{3})}\)

      [a, b, c, d, f, g, h]

    • NIST Hahn With Offset

      \(y = {(a + b*x + c*x^{2} + d*x^{3})} / {(1.0 +f*x + g*x^{2} + h*x^{3})} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • NIST Kirby (NIST_Kirby)

    • NIST Kirby

      \(y = {(a + b*x + c*x^{2})} / {(1.0 + d*x +f*x^{2})}\)

      [a, b, c, d, f]

    • NIST Kirby With Offset

      \(y = {(a + b*x + c*x^{2})} / {(1.0 + d*x +f*x^{2})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • NIST Lanczos (NIST_Lanczos)

    • NIST Lanczos

      \(y = a*\exp{(-b*x)} + c*\exp{(-d*x)} + f*\exp{(-g*x)}\)

      [a, b, c, d, f, g]

    • NIST Lanczos With Offset

      \(y = a*\exp{(-b*x)} + c*\exp{(-d*x)} + f*\exp{(-g*x)} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • NIST MGH09 (NIST_MGH09)

    • NIST MGH09

      \(y = a * {(x^{2} + b*x)} / {(x^{2} + c*x + d)}\)

      [a, b, c, d]

    • NIST MGH09 With Offset

      \(y = a * {(x^{2} + b*x)} / {(x^{2} + c*x + d)}+ \text{Offset}\)

      [a, b, c, d, Offset]

  • NIST MGH10 (NIST_MGH10)

    • NIST MGH10

      \(y = a * \exp{(b/{(x+c)})}\)

      [a, b, c]

    • NIST MGH10 With Offset

      \(y = a * \exp{(b/{(x+c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • NIST MGH17 (NIST_MGH17)

    • NIST MGH17

      \(y = a + b*\exp{(-x*d)} + c*\exp{(-x*f)}\)

      [a, b, c, d, f]

  • NIST Misra1a (NIST_Misra1a)

    • NIST Misra1a

      \(y = a * {(1.0 - \exp{(-b*x)})}\)

      [a, b]

    • NIST Misra1a With Offset

      \(y = a * {(1.0 - \exp{(-b*x)})} + \text{Offset}\)

      [a, b, Offset]

  • NIST Misra1b (NIST_Misra1b)

    • NIST Misra1b

      \(y = a * {(1.0 - {(1.0+b*x/2.0)}^{-2.0})}\)

      [a, b]

    • NIST Misra1b With Offset

      \(y = a * {(1.0 - {(1.0+b*x/2.0)}^{-2.0})} + \text{Offset}\)

      [a, b, Offset]

  • NIST Misra1c (NIST_Misra1c)

    • NIST Misra1c

      \(y = a * {(1.0 - {(1.0 + 2.0*b*x)}^{-0.5})}\)

      [a, b]

    • NIST Misra1c With Offset

      \(y = a * {(1.0 - {(1.0 + 2.0*b*x)}^{-0.5})} + \text{Offset}\)

      [a, b, Offset]

  • NIST Misra1d (NIST_Misra1d)

    • NIST Misra1d

      \(y = a * b * x * {(1.0 + b*x)}^{-1.0}\)

      [a, b]

    • NIST Misra1d With Offset

      \(y = a * b * x * {(1.0 + b*x)}^{-1.0} + \text{Offset}\)

      [a, b, Offset]

  • NIST Rat42 (NIST_Rat42)

    • NIST Rat42

      \(y = a / {(1.0 + \exp{(b - c*x)})}\)

      [a, b, c]

    • NIST Rat42 With Offset

      \(y = a / {(1.0 + \exp{(b - c*x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • NIST Rat43 (NIST_Rat43)

    • NIST Rat43

      \(y = a / {({(1.0 + \exp{(b - c*x)})}^{{(1.0/d)}})}\)

      [a, b, c, d]

    • NIST Rat43 With Offset

      \(y = a / {({(1.0 + \exp{(b - c*x)})}^{{(1.0/d)}})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • NIST Roszman (NIST_Roszman)

    • NIST Roszman

      \(y = a - bx - {(arctan{(c/{(x-d)})} / pi)}\)

      [a, b, c, d]

  • NIST Thurber (NIST_Thurber)

    • NIST Thurber

      \(y = {(a + bx + cx^{2} + dx^{3})} / {(1.0 + fx+ gx^{2} + hx^{3})}\)

      [a, b, c, d, f, g, h]

    • NIST Thurber With Offset

      \(y = {(a + bx + cx^{2} + dx^{3})} / {(1.0 + fx+ gx^{2} + hx^{3})} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

Optical

  • CAUCHY (Cauchy)

    • CAUCHY

      \(n = A + B/x^{2} + C/x^{4}\)

      [A, B, C]

  • CONRADY1 (Conrady1)

    • CONRADY1

      \(n = A + B/x + C/x^{3.5}\)

      [A, B, C]

  • CONRADY2 (Conrady2)

    • CONRADY2

      \(n = A + B/x^{2} + C/x^{3.5}\)

      [A, B, C]

  • HARTMANN1 (Hartmann1)

    • HARTMANN1

      \(n = A + B/{(C - x)}\)

      [A, B, C]

  • HARTMANN2 (Hartmann2)

    • HARTMANN2

      \(n = A + B/{(C - x)}^{2}\)

      [A, B, C]

  • HARTMANN3a (Hartmann3a)

    • HARTMANN3a

      \(n = A + B/{(C - x)}^{1.2}\)

      [A, B, C]

  • HARTMANN3b (Hartmann3b)

    • HARTMANN3b

      \(n = A/{(x - B)}^{1.2}\)

      [A, B]

    • HARTMANN3b With Offset

      \(n = A/{(x - B)}^{1.2} + \text{Offset}\)

      [A, B, Offset]

  • HARTMANN4 (Hartmann4)

    • HARTMANN4

      \(n = A + B/{(C - x)} + D/{(E - x)}\)

      [A, B, C, D, E]

  • HERZBRGR2X2 (Herzberger2X2)

    • HERZBRGR2X2

      \(n = A + Bx^{2} + C / {(x^{2} - 0.028)} + D /{(x^{2} - 0.028)}^{2}\)

      [A, B, C, D]

  • HERZBRGR3X2 (Herzberger3X2)

    • HERZBRGR3X2

      \(n = A + Bx^{2} + Cx^{4} + D /{(x^{2} - 0.028)} + E / {(x^{2} -0.028)}^{2}\)

      [A, B, C, D, E]

  • HERZBRGR3X3 (Herzberger3X3)

    • HERZBRGR3X3

      \(n = A + Bx^{2} + Cx^{4} + D /{(x^{2} - 0.028)} + E / {(x^{2} -0.028)}^{2} + F / {(x^{2} -0.028)}^{4}\)

      [A, B, C, D, E, F]

  • HERZBRGR4X2 (Herzberger4X2)

    • HERZBRGR4X2

      \(n = A + Bx^{2} + Cx^{4} +Dx^{6} + E / {(x^{2} - 0.028)} + F /{(x^{2} - 0.028)}^{2}\)

      [A, B, C, D, E, F]

  • HERZBRGR5X2 (Herzberger5X2)

    • HERZBRGR5X2

      \(n = A + Bx^{2} + Cx^{4} +Dx^{6} + Ex^{8} + F /{(x^{2} - 0.028)} + G / {(x^{2} -0.028)}^{2}\)

      [A, B, C, D, E, F, G]

  • HERZBRGRJK (HerzbergerJK)

    • HERZBRGRJK

      \(n = A + Bx^{2} + Cx^{4} +Dx^{6} + E / {(x^{2} - J)} + F /{(x^{2} - K)}^{2}\)

      [A, B, C, D, E, F, J, K]

  • HoO1 (HoO1)

    • HoO1

      \(n^{2} = A + Bx^{2} + C /{(x^{2} - D^{2})}\)

      [A, B, C, D]

  • HoO2 (HoO2)

    • HoO2

      \(n^{2} = A + Bx^{2} + Cx^{2}/ {(x^{2} - D^{2})}\)

      [A, B, C, D]

  • KINGSLAKE1 (Kingslake1)

    • KINGSLAKE1

      \(n^{2} = A + B/{(x^{2}-C^{2})}+ D/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

  • KINGSLAKE2 (Kingslake2)

    • KINGSLAKE2

      \(n^{2} = A + B/{(x^{2}-C^{2})}+ D/{(x^{2}-E^{2})} +F/{(x^{2}-G^{2})}\)

      [A, B, C, D, E, F, G]

  • MISC01 (Misc01)

    • MISC01

      \(n^{2} = A + B/{(x^{2}-C^{2})}\)

      [A, B, C]

  • MISC02 (Misc02)

    • MISC02

      \(n^{2} = A + Bx^{2} +C/{(x^{2}-D^{2})}\)

      [A, B, C, D]

  • MISC03 (Misc03)

    • MISC03

      \(n^{2} = A + B/x^{2} +Cx^{2}/{(x^{2}-D^{2})}\)

      [A, B, C, D]

  • MISC04 (Misc04)

    • MISC04

      \(n^{2} = A + Bx^{2} + Cx^{4}+ D/x^{2} +Ex^{2}/{(x^{2}-F+{(Gx^{2}/{(x^{2}-F)})})}\)

      [A, B, C, D, E, F, G]

  • SCHOTT2X3 (Schott2X3)

    • SCHOTT2X3

      \(n^{2} = A + Bx^{2} +C/x^{2} + D/x^{4} + E/x^{6}\)

      [A, B, C, D, E]

  • SCHOTT2X4 (Schott2X4)

    • SCHOTT2X4

      \(n^{2} = A + Bx^{2} +C/x^{2} + D/x^{4} + E/x^{6}+ F/x^{8}\)

      [A, B, C, D, E, F]

  • SCHOTT2X5 (Schott2X5)

    • SCHOTT2X5

      \(n^{2} = A + Bx^{2} +C/x^{2} + D/x^{4} + E/x^{6}+ F/x^{8} + G/x^{10}\)

      [A, B, C, D, E, F, G]

  • SCHOTT2X6 (Schott2X6)

    • SCHOTT2X6

      \(n^{2} = A + Bx^{2} +C/x^{2} + D/x^{4} + E/x^{6}+ F/x^{8} + G/x^{10} +H/x^{12}\)

      [A, B, C, D, E, F, G, H]

  • SCHOTT3X3 (Schott3X3)

    • SCHOTT3X3

      \(n^{2} = A + Bx^{2} + Cx^{4}+ D/x^{2} + E/x^{4} +F/x^{6}\)

      [A, B, C, D, E, F]

  • SCHOTT3X4 (Schott3X4)

    • SCHOTT3X4

      \(n^{2} = A + Bx^{2} + Cx^{4}+ D/x^{2} + E/x^{4} +F/x^{6} + G/x^{8}\)

      [A, B, C, D, E, F, G]

  • SCHOTT3X5 (Schott3X5)

    • SCHOTT3X5

      \(n^{2} = A + Bx^{2} + Cx^{4}+ D/x^{2} + E/x^{4} +F/x^{6} + G/x^{8} +H/x^{10}\)

      [A, B, C, D, E, F, G, H]

  • SCHOTT4X4 (Schott4X4)

    • SCHOTT4X4

      \(n^{2} = A + Bx^{2} + Cx^{4}+ Dx^{6} + E/x^{2} +F/x^{4} + G/x^{6} + H/x^{8}\)

      [A, B, C, D, E, F, G, H]

  • SCHOTT5X5 (Schott5X5)

    • SCHOTT5X5

      \(n^{2} = A + Bx^{2} + Cx^{4}+ Dx^{6} + Ex^{8} + F/x^{2}+ G/x^{4} + H/x^{6} +J/x^{8} + K/x^{10}\)

      [A, B, C, D, E, F, G, H, J, K]

  • SELL1T (Sell1T)

    • SELL1T

      \(n^{2} = 1 + Ax^{2} / {(x^{2}- B^{2})}\)

      [A, B]

  • SELL1TA (Sell1TA)

    • SELL1TA

      \(n^{2} = A + Bx^{2} / {(x^{2}- C^{2})}\)

      [A, B, C]

  • SELL2T (Sell2T)

    • SELL2T

      \(n^{2} = 1 +Ax^{2}/{(x^{2}-B^{2})} +Cx^{2}/{(x^{2}-D^{2})}\)

      [A, B, C, D]

  • SELL2TA (Sell2TA)

    • SELL2TA

      \(n^{2} = A +Bx^{2}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

  • SELL3T (Sell3T)

    • SELL3T

      \(n^{2} = 1 +Ax^{2}/{(x^{2}-B^{2})} +Cx^{2}/{(x^{2}-D^{2})} +Ex^{2}/{(x^{2}-F^{2})}\)

      [A, B, C, D, E, F]

  • SELL3TA (Sell3TA)

    • SELL3TA

      \(n^{2} = A +Bx^{2}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})} +Fx^{2}/{(x^{2}-G^{2})}\)

      [A, B, C, D, E, F, G]

  • SELL4T (Sell4T)

    • SELL4T

      \(n^{2} = 1 +Ax^{2}/{(x^{2}-B^{2})} +Cx^{2}/{(x^{2}-D^{2})} +Ex^{2}/{(x^{2}-F^{2})} +Gx^{2}/{(x^{2}-H^{2})}\)

      [A, B, C, D, E, F, G, H]

  • SELL4TA (Sell4TA)

    • SELL4TA

      \(n^{2} = A +Bx^{2}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})} +Fx^{2}/{(x^{2}-G^{2})} +Hx^{2}/{(x^{2}-J^{2})}\)

      [A, B, C, D, E, F, G, H, J]

  • SELL5T (Sell5T)

    • SELL5T

      \(n^{2} = 1 +Ax^{2}/{(x^{2}-B^{2})} +Cx^{2}/{(x^{2}-D^{2})} +Ex^{2}/{(x^{2}-F^{2})} +Gx^{2}/{(x^{2}-H^{2})} +Jx^{2}/{(x^{2}-K^{2})}\)

      [A, B, C, D, E, F, G, H, J, K]

  • SELL5TA (Sell5TA)

    • SELL5TA

      \(n^{2} = A +Bx^{2}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})} +Fx^{2}/{(x^{2}-G^{2})} +Hx^{2}/{(x^{2}-J^{2})} +Kx^{2}/{(x^{2}-M^{2})}\)

      [A, B, C, D, E, F, G, H, J, K, M]

  • SELL6TA (Sell6TA)

    • SELL6TA

      \(n^{2} = A +Bx^{2}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})} +Fx^{2}/{(x^{2}-G^{2})} +Hx^{2}/{(x^{2}-J^{2})} +Kx^{2}/{(x^{2}-M^{2})} +Nx^{2}/{(x^{2}-P^{2})}\)

      [A, B, C, D, E, F, G, H, J, K, M, N, P]

  • SELL7TA (Sell7TA)

    • SELL7TA

      \(n^{2} = A +Bx^{2}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})} +Fx^{2}/{(x^{2}-G^{2})} +Hx^{2}/{(x^{2}-J^{2})} +Kx^{2}/{(x^{2}-M^{2})} +Nx^{2}/{(x^{2}-P^{2})} +Qx^{2}/{(x^{2}-R^{2})}\)

      [A, B, C, D, E, F, G, H, J, K, M, N, P, Q, R]

  • SELLMOD1 (Sellmod1)

    • SELLMOD1

      \(n^{2} = A + Bx + Cx^{2} +Dx^{2}/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

  • SELLMOD1A (Sellmod1A)

    • SELLMOD1A

      \(n^{2} = A + Bx + Cx^{2} +D/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

  • SELLMOD2 (Sellmod2)

    • SELLMOD2

      \(n^{2} = A + Bx + Cx^{4} +Dx^{2}/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

  • SELLMOD2A (Sellmod2A)

    • SELLMOD2A

      \(n^{2} = A + Bx + Cx^{4} +D/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

  • SELLMOD3 (Sellmod3)

    • SELLMOD3

      \(n^{2} ={(Ax^{2}+B)}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

    • SELLMOD3 With Offset

      \(n^{2} ={(Ax^{2}+B)}/{(x^{2}-C^{2})} +Dx^{2}/{(x^{2}-E^{2})} +\text{Offset}\)

      [A, B, C, D, E, Offset]

  • SELLMOD4 (Sellmod4)

    • SELLMOD4

      \(n^{2} = A + Bx^{2} +C/x^{2} +Dx^{2}/{(x^{2}-E^{2})} +Fx^{2}/{(x^{2}-G^{2})}\)

      [A, B, C, D, E, F, G]

  • SELLMOD4A (Sellmod4A)

    • SELLMOD4A

      \(n^{2} = A + Bx^{2} +C/x^{2} + D/{(x^{2}-E^{2})} +F/{(x^{2}-G^{2})}\)

      [A, B, C, D, E, F, G]

  • SELLMOD5 (Sellmod5)

    • SELLMOD5

      \(n^{2} = A + Bx^{2} +Cx^{2}/{(x^{2}-D^{2})} +Ex^{2}/{(x^{2}-F^{2})}\)

      [A, B, C, D, E, F]

  • SELLMOD6 (Sellmod6)

    • SELLMOD6

      \(n^{2} = A +Bx^{2}/{(x^{2}-C^{2})} +D/{(x^{2}-E^{2})}\)

      [A, B, C, D, E]

  • SELLMOD7 (Sellmod7)

    • SELLMOD7

      \(n^{2} = A + Bx^{2} + Cx^{4}+ D/x^{6} +Ex^{2}/{(x^{2}-F^{2})}\)

      [A, B, C, D, E, F]

  • SELLMOD7A (Sellmod7A)

    • SELLMOD7A

      \(n^{2} = A + Bx^{2} + Cx^{4}+ D/x^{6} + E/{(x^{2}-F^{2})}\)

      [A, B, C, D, E, F]

  • SELLMOD8 (Sellmod8)

    • SELLMOD8

      \(n^{2} = A + Bx^{2} + Cx^{4}+ D/{(x^{2}-E^{2})} +F/{(x^{2}-G^{2})}\)

      [A, B, C, D, E, F, G]

  • SELLMOD9 (Sellmod9)

    • SELLMOD9

      \(n^{2} = A + B/x^{2} +C/x^{4} + D/x^{6} +Ex^{2}/{(x^{2}-F^{2})}\)

      [A, B, C, D, E, F]

Peak

  • Arnold Cohen Log-Normal Peak Shifted (ArnoldCohenLogNormalShifted)

    • Arnold Cohen Log-Normal Peak Shifted

      \(y = a * {(\exp{(-0.5 * {({(ln{(x-f)}-b)}/c)}^{2})})} / {(d * {(x-g)})}\)

      [a, b, c, d, f, g]

    • Arnold Cohen Log-Normal Peak Shifted With Offset

      \(y = a * {(\exp{(-0.5 * {({(ln{(x-f)}-b)}/c)}^{2})})} / {(d * {(x-g)})} +\text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Arnold Cohen Two-Parameter Log-Normal Peak Shifted (ArnoldCohenTwoParameterLogNormalShifted)

    • Arnold Cohen Two-Parameter Log-Normal Peak Shifted

      \(y = \exp{(-0.5 * {({(ln{(x-d)}-b)}/c)}^{2})} / {(\sqrt{(2*pi)} * c *{(x-f)})}\)

      [b, c, d, f]

    • Arnold Cohen Two-Parameter Log-Normal Peak Shifted With Offset

      \(y = \exp{(-0.5 * {({(ln{(x-d)}-b)}/c)}^{2})} / {(\sqrt{(2*pi)} * c *{(x-f)})} + \text{Offset}\)

      [b, c, d, f, Offset]

  • Box Lucas A (BoxLucasA)

    • Box Lucas A

      \(y = a * {(1.0 - b^{x})}\)

      [a, b]

    • Box Lucas A With Offset

      \(y = a * {(1.0 - b^{x})} + \text{Offset}\)

      [a, b, Offset]

  • Box Lucas A Shifted (BoxLucasAShifted)

    • Box Lucas A Shifted

      \(y = a * {(1.0 - b^{x-c})}\)

      [a, b, c]

    • Box Lucas A Shifted With Offset

      \(y = a * {(1.0 - b^{x-c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Box Lucas B (BoxLucasB)

    • Box Lucas B

      \(y = a * {(1.0 - \exp{(-bx)})}\)

      [a, b]

    • Box Lucas B With Offset

      \(y = a * {(1.0 - \exp{(-bx)})} + \text{Offset}\)

      [a, b, Offset]

  • Box Lucas B Shifted (BoxLucasBShifted)

    • Box Lucas B Shifted

      \(y = a * {(1.0 - \exp{(-b{(x-c)})})}\)

      [a, b, c]

    • Box Lucas B Shifted With Offset

      \(y = a * {(1.0 - \exp{(-b{(x-c)})})} + \text{Offset}\)

      [a, b, c, Offset]

  • Box Lucas C (BoxLucasC)

    • Box Lucas C

      \(y = {(a / {(a-b)})} * {(\exp{(-bx)} - \exp{(-ax)})}\)

      [a, b]

    • Box Lucas C With Offset

      \(y = {(a / {(a-b)})} * {(\exp{(-bx)} - \exp{(-ax)})} + \text{Offset}\)

      [a, b, Offset]

  • Box Lucas C shifted (BoxLucasCShifted)

    • Box Lucas C shifted

      \(y = {(a / {(a-b)})} * {(\exp{(-b{(x-c)})} - \exp{(-a{(x-c)})})}\)

      [a, b, c]

    • Box Lucas C shifted With Offset

      \(y = {(a / {(a-b)})} * {(\exp{(-b{(x-c)})} - \exp{(-a{(x-c)})})} + \text{Offset}\)

      [a, b, c, Offset]

  • Extreme Value 4 Parameter Peak (ExtremeValue4ParameterPeak)

    • Extreme Value 4 Parameter Peak

      \(y = a * \exp{(-x + b + c - c*d*\exp{(-1.0 * {({(x + c*ln{(d)} - b)} / c)})} /{(c*d)})}\)

      [a, b, c, d]

    • Extreme Value 4 Parameter Peak With Offset

      \(y = a * \exp{(-x + b + c - c*d*\exp{(-1.0 * {({(x + c*ln{(d)} - b)} / c)})} /{(c*d)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Extreme Value Area (ExtremeValueArea)

    • Extreme Value Area

      \(y = {(a/c)} * \exp{(-\exp{(-{({(x-b)}/c)})}-{({(x-b)}/c)})}\)

      [a, b, c]

    • Extreme Value Area With Offset

      \(y = {(a/c)} * \exp{(-\exp{(-{({(x-b)}/c)})}-{({(x-b)}/c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Extreme Value Peak (ExtremeValuePeak)

    • Extreme Value Peak

      \(y = a * \exp{(-\exp{(-{({(x-b)}/c)})}-{({(x-b)}/c)}+1.0)}\)

      [a, b, c]

    • Extreme Value Peak With Offset

      \(y = a * \exp{(-\exp{(-{({(x-b)}/c)})}-{({(x-b)}/c)}+1.0)} + \text{Offset}\)

      [a, b, c, Offset]

  • Gaussian Area (GaussianArea)

    • Gaussian Area

      \(y = {(a / {(pow{(2*pi, 0.5)} * c)})} * \exp{(-0.5 *{({(x-b)}/c)}^{2})}\)

      [a, b, c]

    • Gaussian Area With Offset

      \(y = {(a / {(pow{(2*pi, 0.5)} * c)})} * \exp{(-0.5 *{({(x-b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Gaussian Peak (GaussianPeak)

    • Gaussian Peak

      \(y = a * \exp{(-0.5 * {({(x-b)}/c)}^{2})}\)

      [a, b, c]

    • Gaussian Peak With Offset

      \(y = a * \exp{(-0.5 * {({(x-b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Gaussian Peak Modified (GaussianPeak_Modified)

    • Gaussian Peak Modified

      \(y = a * \exp{(-0.5 * {({(x-b)}/c)}^{d})}\)

      [a, b, c, d]

    • Gaussian Peak Modified With Offset

      \(y = a * \exp{(-0.5 * {({(x-b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Hamilton (Hamilton)

    • Hamilton

      \(Vb = Gb * {(I/mu)}^{ln{(mu/I)}/{(B*B)}} +{(Vb_{max} * I)}/{(I + sigma\_b)}\)

      [Gb, mu, B, Vbmax, sigma_b]

    • Hamilton With Offset

      \(Vb = Gb * {(I/mu)}^{ln{(mu/I)}/{(B*B)}} +{(Vb_{max} * I)}/{(I + sigma\_b)} + \text{Offset}\)

      [Gb, mu, B, Vbmax, sigma_b, Offset]

  • Laplace Area (LaplaceArea)

    • Laplace Area

      \(y = {(a / {(pow{(2.0, 0.5)} * c)})} * \exp{({(-1.0 * pow{(2.0, 0.5)} * abs{(x-b)})}/c)}\)

      [a, b, c]

    • Laplace Area With Offset

      \(y = {(a / {(pow{(2.0, 0.5)} * c)})} * \exp{({(-1.0 * pow{(2.0, 0.5)} * abs{(x-b)})}/c)}+ \text{Offset}\)

      [a, b, c, Offset]

  • Laplace Peak (LaplacePeak)

    • Laplace Peak

      \(y = a * \exp{({(-1.0 * pow{(2.0, 0.5)} * abs{(x-b)})}/c)}\)

      [a, b, c]

    • Laplace Peak With Offset

      \(y = a * \exp{({(-1.0 * pow{(2.0, 0.5)} * abs{(x-b)})}/c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Log-Normal 4 Parameter (LogNormal4Parameter)

    • Log-Normal 4 Parameter

      \(y = a * \exp{(-1.0 * {(ln{(2)} * ln{({({({(x-b)} * {(d^{2}-1)})} /{(c*d)})} + 1.0)}^{2})} / ln{(d)}^{2})}\)

      [a, b, c, d]

    • Log-Normal 4 Parameter With Offset

      \(y = a * \exp{(-1.0 * {(ln{(2)} * ln{({({({(x-b)} * {(d^{2}-1)})} /{(c*d)})} + 1.0)}^{2})} / ln{(d)}^{2})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Log-Normal Peak A (LogNormalA)

    • Log-Normal Peak A

      \(y = a * \exp{(-0.5 * {({(ln{(x)}-b)}/c)}^{2})}\)

      [a, b, c]

    • Log-Normal Peak A With Offset

      \(y = a * \exp{(-0.5 * {({(ln{(x)}-b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Log-Normal Peak A Shifted (LogNormalAShifted)

    • Log-Normal Peak A Shifted

      \(y = a * \exp{(-0.5 * {({(ln{(x-d)}-b)}/c)}^{2})}\)

      [a, b, c, d]

    • Log-Normal Peak A Shifted With Offset

      \(y = a * \exp{(-0.5 * {({(ln{(x-d)}-b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Log-Normal Peak A Modified (LogNormalA_Modified)

    • Log-Normal Peak A Modified

      \(y = a * \exp{(-0.5 * {({(ln{(x)}-b)}/c)}^{d})}\)

      [a, b, c, d]

    • Log-Normal Peak A Modified With Offset

      \(y = a * \exp{(-0.5 * {({(ln{(x)}-b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Log-Normal Peak A Modified Shifted (LogNormalA_ModifiedShifted)

    • Log-Normal Peak A Modified Shifted

      \(y = a * \exp{(-0.5 * {({(ln{(x-f)}-b)}/c)}^{d})}\)

      [a, b, c, d, f]

    • Log-Normal Peak A Modified Shifted With Offset

      \(y = a * \exp{(-0.5 * {({(ln{(x-f)}-b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Log-Normal Peak B (LogNormalB)

    • Log-Normal Peak B

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{2})}\)

      [a, b, c]

    • Log-Normal Peak B With Offset

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Log-Normal Peak B Shifted (LogNormalBShifted)

    • Log-Normal Peak B Shifted

      \(y = a * \exp{(-0.5 * {(ln{({(x-d/b)})}/c)}^{2})}\)

      [a, b, c, d]

    • Log-Normal Peak B Shifted With Offset

      \(y = a * \exp{(-0.5 * {(ln{({(x-d/b)})}/c)}^{2})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Log-Normal Peak B Modified (LogNormalB_Modified)

    • Log-Normal Peak B Modified

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{d})}\)

      [a, b, c, d]

    • Log-Normal Peak B Modified With Offset

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Log-Normal Peak B Modified Shifted (LogNormalB_ModifiedShifted)

    • Log-Normal Peak B Modified Shifted

      \(y = a * \exp{(-0.5 * {(ln{({(x-f)}/b)}/c)}^{d})}\)

      [a, b, c, d, f]

    • Log-Normal Peak B Modified Shifted With Offset

      \(y = a * \exp{(-0.5 * {(ln{({(x-f)}/b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Logistic Area (LogisticArea)

    • Logistic Area

      \(y = a * \exp{(-1.0 * {(x-b)} / c)} / {(c * {(1.0 + \exp{(-1.0 * {(x-b)} /c)})}^{2})}\)

      [a, b, c]

    • Logistic Area With Offset

      \(y = a * \exp{(-1.0 * {(x-b)} / c)} / {(c * {(1.0 + \exp{(-1.0 * {(x-b)} /c)})}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Logistic Peak (LogisticPeak)

    • Logistic Peak

      \(y = 4a * \exp{(-1.0 * {(x-b)} / c)} / {(1.0 + \exp{(-1.0 * {(x-b)} /c)})}^{2}\)

      [a, b, c]

    • Logistic Peak With Offset

      \(y = 4a * \exp{(-1.0 * {(x-b)} / c)} / {(1.0 + \exp{(-1.0 * {(x-b)} /c)})}^{2} + \text{Offset}\)

      [a, b, c, Offset]

  • Lorentzian Modified Peak A (LorentzianModifiedPeakA)

    • Lorentzian Modified Peak A

      \(y = 1.0 / {(1.0 + {(x-a)}^{b})}\)

      [a, b]

    • Lorentzian Modified Peak A With Offset

      \(y = 1.0 / {(1.0 + {(x-a)}^{b})} + \text{Offset}\)

      [a, b, Offset]

  • Lorentzian Modified Peak B (LorentzianModifiedPeakB)

    • Lorentzian Modified Peak B

      \(y = 1.0 / {(a + {(x-b)}^{c})}\)

      [a, b, c]

    • Lorentzian Modified Peak B With Offset

      \(y = 1.0 / {(a + {(x-b)}^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Lorentzian Modified Peak C (LorentzianModifiedPeakC)

    • Lorentzian Modified Peak C

      \(y = a / {(b + {(x-c)}^{d})}\)

      [a, b, c, d]

    • Lorentzian Modified Peak C With Offset

      \(y = a / {(b + {(x-c)}^{d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Lorentzian Modified Peak D (LorentzianModifiedPeakD)

    • Lorentzian Modified Peak D

      \(y = 1.0 / {(1.0 + {({(x-a)}/b)}^{c})}\)

      [a, b, c]

    • Lorentzian Modified Peak D With Offset

      \(y = 1.0 / {(1.0 + {({(x-a)}/b)}^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Lorentzian Modified Peak E (LorentzianModifiedPeakE)

    • Lorentzian Modified Peak E

      \(y = 1.0 / {(a + {({(x-b)}/c)}^{d})}\)

      [a, b, c, d]

    • Lorentzian Modified Peak E With Offset

      \(y = 1.0 / {(a + {({(x-b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Lorentzian Modified Peak F (LorentzianModifiedPeakF)

    • Lorentzian Modified Peak F

      \(y = a / {(b + {({(x-c)}/d)}^{f})}\)

      [a, b, c, d, f]

    • Lorentzian Modified Peak F With Offset

      \(y = a / {(b + {({(x-c)}/d)}^{f})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Lorentzian Modified Peak G (LorentzianModifiedPeakG)

    • Lorentzian Modified Peak G

      \(y = a / {(1.0 + {({(x-b)}/c)}^{d})}\)

      [a, b, c, d]

    • Lorentzian Modified Peak G With Offset

      \(y = a / {(1.0 + {({(x-b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Lorentzian Peak A (LorentzianPeakA)

    • Lorentzian Peak A

      \(y = 1.0 / {(1.0 + {(x-a)}^{2})}\)

      [a]

    • Lorentzian Peak A With Offset

      \(y = 1.0 / {(1.0 + {(x-a)}^{2})} + \text{Offset}\)

      [a, Offset]

  • Lorentzian Peak B (LorentzianPeakB)

    • Lorentzian Peak B

      \(y = 1.0 / {(a + {(x-b)}^{2})}\)

      [a, b]

    • Lorentzian Peak B With Offset

      \(y = 1.0 / {(a + {(x-b)}^{2})} + \text{Offset}\)

      [a, b, Offset]

  • Lorentzian Peak C (LorentzianPeakC)

    • Lorentzian Peak C

      \(y = a / {(b + {(x-c)}^{2})}\)

      [a, b, c]

    • Lorentzian Peak C With Offset

      \(y = a / {(b + {(x-c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Lorentzian Peak D (LorentzianPeakD)

    • Lorentzian Peak D

      \(y = 1.0 / {(1.0 + {({(x-a)}/b)}^{2})}\)

      [a, b]

    • Lorentzian Peak D With Offset

      \(y = 1.0 / {(1.0 + {({(x-a)}/b)}^{2})} + \text{Offset}\)

      [a, b, Offset]

  • Lorentzian Peak E (LorentzianPeakE)

    • Lorentzian Peak E

      \(y = 1.0 / {(a + {({(x-b)}/c)}^{2})}\)

      [a, b, c]

    • Lorentzian Peak E With Offset

      \(y = 1.0 / {(a + {({(x-b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Lorentzian Peak F (LorentzianPeakF)

    • Lorentzian Peak F

      \(y = a / {(b + {({(x-c)}/d)}^{2})}\)

      [a, b, c, d]

    • Lorentzian Peak F With Offset

      \(y = a / {(b + {({(x-c)}/d)}^{2})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Lorentzian Peak G (LorentzianPeakG)

    • Lorentzian Peak G

      \(y = a / {(1.0 + {({(x-b)}/c)}^{2})}\)

      [a, b, c]

    • Lorentzian Peak G With Offset

      \(y = a / {(1.0 + {({(x-b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Pseudo-Voight Peak (PseudoVoight)

    • Pseudo-Voight Peak

      \(y = a * {(d * {(1/{(1+{({(x-b)}/c)}^{2})})} + {(1-d)} * \exp{(-0.5 *{({(x-b)}/c)}^{2})})}\)

      [a, b, c, d]

    • Pseudo-Voight Peak With Offset

      \(y = a * {(d * {(1/{(1+{({(x-b)}/c)}^{2})})} + {(1-d)} * \exp{(-0.5 *{({(x-b)}/c)}^{2})})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Pseudo-Voight Peak Modified (PseudoVoight_Modified)

    • Pseudo-Voight Peak Modified

      \(y = a * {(d * {(1/{(1+{({(x-b)}/c)}^{f})})} + {(1-d)} * \exp{(-0.5 *{({(x-b)}/c)}^{g})})}\)

      [a, b, c, d, f, g]

    • Pseudo-Voight Peak Modified With Offset

      \(y = a * {(d * {(1/{(1+{({(x-b)}/c)}^{f})})} + {(1-d)} * \exp{(-0.5 *{({(x-b)}/c)}^{g})})} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Pulse Peak (Pulse)

    • Pulse Peak

      \(y = 4a * \exp{(-{(x-b)}/c)} * {(1.0 - \exp{(-{(x-b)}/c)})}\)

      [a, b, c]

    • Pulse Peak With Offset

      \(y = 4a * \exp{(-{(x-b)}/c)} * {(1.0 - \exp{(-{(x-b)}/c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • UVED Fruit Growth Rate (UVEDFruitGrowthRate)

    • UVED Fruit Growth Rate

      \(y ={({(t/5)}^{{(a-1)}}*{(1-t/5)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}\)

      [a, b]

    • UVED Fruit Growth Rate With Offset

      \(y ={({(t/5)}^{{(a-1)}}*{(1-t/5)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}+ \text{Offset}\)

      [a, b, Offset]

  • UVED Fruit Growth Rate B (UVEDFruitGrowthRateB)

    • UVED Fruit Growth Rate B

      \(y = c *{({(t/5)}^{{(a-1)}}*{(1-t/5)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}\)

      [a, b, c]

    • UVED Fruit Growth Rate B With Offset

      \(y = c *{({(t/5)}^{{(a-1)}}*{(1-t/5)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}+ \text{Offset}\)

      [a, b, c, Offset]

  • UVED Fruit Growth Rate Scaled (UVEDFruitGrowthRateScaled)

    • UVED Fruit Growth Rate Scaled

      \(y ={(c*t)}^{{(a-1)}}*{(1-{(c*t)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}\)

      [a, b, c]

    • UVED Fruit Growth Rate Scaled With Offset

      \(y ={(c*t)}^{{(a-1)}}*{(1-{(c*t)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}+ \text{Offset}\)

      [a, b, c, Offset]

  • UVED Fruit Growth Rate Scaled B (UVEDFruitGrowthRateScaledB)

    • UVED Fruit Growth Rate Scaled B

      \(y = d *{(c*t)}^{{(a-1)}}*{(1-{(c*t)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}\)

      [a, b, c, d]

    • UVED Fruit Growth Rate Scaled B With Offset

      \(y = d *{(c*t)}^{{(a-1)}}*{(1-{(c*t)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}+ \text{Offset}\)

      [a, b, c, d, Offset]

  • UVED Fruit Growth Rate Transform (UVEDFruitGrowthRateTransform)

    • UVED Fruit Growth Rate Transform

      \(y ={(c*t+d)}^{{(a-1)}}*{(1-{(c*t+d)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}\)

      [a, b, c, d]

    • UVED Fruit Growth Rate Transform With Offset

      \(y ={(c*t+d)}^{{(a-1)}}*{(1-{(c*t+d)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}+ \text{Offset}\)

      [a, b, c, d, Offset]

  • UVED Fruit Growth Rate Transform B (UVEDFruitGrowthRateTransformB)

    • UVED Fruit Growth Rate Transform B

      \(y = f *{(c*t+d)}^{{(a-1)}}*{(1-{(c*t+d)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}\)

      [a, b, c, d, f]

    • UVED Fruit Growth Rate Transform B With Offset

      \(y = f *{(c*t+d)}^{{(a-1)}}*{(1-{(c*t+d)}^{{(b-1)}})}/{({({(a-1)}/{(a+b-2)})}^{{(a-1)}}*{({(b-1)}/{(a+b-2)})}^{{(b-1)}})}+ \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Weibull Peak (WeibullPeak)

    • Weibull Peak

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{2})}\)

      [a, b, c]

    • Weibull Peak With Offset

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Weibull Peak Shifted (WeibullPeakShifted)

    • Weibull Peak Shifted

      \(y = a * \exp{(-0.5 * {(ln{({(x-d)}/b)}/c)}^{2})}\)

      [a, b, c, d]

    • Weibull Peak Shifted With Offset

      \(y = a * \exp{(-0.5 * {(ln{({(x-d)}/b)}/c)}^{2})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Weibull Peak Modified (WeibullPeak_Modified)

    • Weibull Peak Modified

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{d})}\)

      [a, b, c, d]

    • Weibull Peak Modified With Offset

      \(y = a * \exp{(-0.5 * {(ln{(x/b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Weibull Peak Modified Shifted (WeibullPeak_ModifiedShifted)

    • Weibull Peak Modified Shifted

      \(y = a * \exp{(-0.5 * {(ln{({(x-f)}/b)}/c)}^{d})}\)

      [a, b, c, d, f]

    • Weibull Peak Modified Shifted With Offset

      \(y = a * \exp{(-0.5 * {(ln{({(x-f)}/b)}/c)}^{d})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

Polyfunctional

  • User-Selectable Polyfunctional (UserSelectablePolyfunctional)

    • User-Selectable Polyfunctional

      \(y = user-selectable function\)

      []

Polynomial

  • 3rd Order (Cubic) (Cubic)

    • 3rd Order (Cubic)

      \(y = a + bx + cx^{2} + dx^{3}\)

      [a, b, c, d]

  • 1st Order (Linear) (Linear)

    • 1st Order (Linear)

      \(y = a + bx\)

      [a, b]

  • Marc Plante’s Custom Quadratic (MarcPlanteQuadratic)

    • Marc Plante’s Custom Quadratic

      \(y = {(-b + {(b^{2} - 4 a {(c - x)})}^{0.5})} / 2/ a\)

      [a, b, c]

    • Marc Plante’s Custom Quadratic With Offset

      \(y = {(-b + {(b^{2} - 4 a {(c - x)})}^{0.5})} / 2/ a + \text{Offset}\)

      [a, b, c, Offset]

  • 2nd Order (Quadratic) (Quadratic)

    • 2nd Order (Quadratic)

      \(y = a + bx + cx^{2}\)

      [a, b, c]

  • 4th Order (Quartic) (Quartic)

    • 4th Order (Quartic)

      \(y = a + bx + cx^{2} + dx^{3} +fx^{4}\)

      [a, b, c, d, f]

  • 5th Order (Quintic) (Quintic)

    • 5th Order (Quintic)

      \(y = a + bx + cx^{2} + dx^{3} +fx^{4} + gx^{5}\)

      [a, b, c, d, f, g]

  • User-Customizable Polynomial (UserCustomizablePolynomial)

    • User-Customizable Polynomial

      \(y = user-customizable polynomial\)

      []

  • User-Selectable Polynomial (UserSelectablePolynomial)

    • User-Selectable Polynomial

      \(y = user-selectable polynomial\)

Power

  • Geometric Modified (Geometric_Modified)

    • Geometric Modified

      \(y = a * x^{{(b/x)}}\)

      [a, b]

    • Geometric Modified With Offset

      \(y = a * x^{{(b/x)}} + \text{Offset}\)

      [a, b, Offset]

  • Power A Modified (PowerA_Modified)

    • Power A Modified

      \(y = a * b^{x}\)

      [a, b]

    • Power A Modified With Offset

      \(y = a * b^{x} + \text{Offset}\)

      [a, b, Offset]

  • Power A Modified Transform (PowerA_Modified_Transform)

    • Power A Modified Transform

      \(y = a * b^{cx + d}\)

      [a, b, c, d]

    • Power A Modified Transform With Offset

      \(y = a * b^{cx + d} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Power B Modified (PowerB_Modified)

    • Power B Modified

      \(y = a^{ln{(x)}}\)

      [a]

    • Power B Modified With Offset

      \(y = a^{ln{(x)}} + \text{Offset}\)

      [a, Offset]

  • Power B Modified Transform (PowerB_Modified_Transform)

    • Power B Modified Transform

      \(y = a^{ln{(bx + c)}}\)

      [a, b, c]

    • Power B Modified Transform With Offset

      \(y = a^{ln{(bx + c)}} + \text{Offset}\)

      [a, b, c, Offset]

  • Power C Modified (PowerC_Modified)

    • Power C Modified

      \(y = {(a + x)}^{b}\)

      [a, b]

    • Power C Modified With Offset

      \(y = {(a + x)}^{b} + \text{Offset}\)

      [a, b, Offset]

  • Power C Modified Transform (PowerC_Modified_Transform)

    • Power C Modified Transform

      \(y = {(a + bx)}^{c}\)

      [a, b, c]

    • Power C Modified Transform With Offset

      \(y = {(a + bx)}^{c} + \text{Offset}\)

      [a, b, c, Offset]

  • Power Law With Exponential Cutoff (PowerLawExponentialCutoff)

    • Power Law With Exponential Cutoff

      \(p{(k)} = C * k^{{(-T)}} * \exp{(-k/K)}\)

      [C, T, K]

    • Power Law With Exponential Cutoff With Offset

      \(p{(k)} = C * k^{{(-T)}} * \exp{(-k/K)} + \text{Offset}\)

      [C, T, K, Offset]

  • Root (PowerRoot)

    • Root

      \(y = a^{{(1.0/x)}}\)

      [a]

    • Root With Offset

      \(y = a^{{(1.0/x)}} + \text{Offset}\)

      [a, Offset]

  • Simple Power (SimplePower)

    • Simple Power

      \(y = x^{a}\)

      [a]

    • Simple Power With Offset

      \(y = x^{a} + \text{Offset}\)

      [a, Offset]

  • Standard Geometric (StandardGeometric)

    • Standard Geometric

      \(y = a * x^{bx}\)

      [a, b]

    • Standard Geometric With Offset

      \(y = a * x^{bx} + \text{Offset}\)

      [a, b, Offset]

  • Standard Power (StandardPower)

    • Standard Power

      \(y = a * x^{b}\)

      [a, b]

    • Standard Power With Offset

      \(y = a * x^{b} + \text{Offset}\)

      [a, b, Offset]

  • X Shifted Power (XShiftedPower)

    • X Shifted Power

      \(y = a * {(x-b)}^{c}\)

      [a, b, c]

    • X Shifted Power With Offset

      \(y = a * {(x-b)}^{c} + \text{Offset}\)

      [a, b, c, Offset]

Rational

  • User-Selectable Rational (UserSelectableRational)

    • User-Selectable Rational

      \(y = user-selectable rational\)

      []

    • User-Selectable Rational With Offset

      \(y = user-selectable rational + \text{Offset}\)

      [Offset]

Sigmoidal

  • BET Sigmoidal A (BET_Sigmoidal_A)

    • BET Sigmoidal A

      \(y = x / {(a + bx - {(a+b)}x^{2})}\)

      [a, b]

    • BET Sigmoidal A With Offset

      \(y = x / {(a + bx - {(a+b)}x^{2})} + \text{Offset}\)

      [a, b, Offset]

  • BET Sigmoidal B (BET_Sigmoidal_B)

    • BET Sigmoidal B

      \(y = abx / {(1.0 + {(b-2.0)}x - {(b-1.0)}x^{2})}\)

      [a, b]

    • BET Sigmoidal B With Offset

      \(y = abx / {(1.0 + {(b-2.0)}x - {(b-1.0)}x^{2})} + \text{Offset}\)

      [a, b, Offset]

  • Boltzmann Sigmoid A (BoltzmannSigmoidA)

    • Boltzmann Sigmoid A

      \(y = {(a - b)} / {(1.0 + \exp{({(x-c)}/d)})} + b\)

      [a, b, c, d]

  • Boltzmann Sigmoid B (BoltzmannSigmoidB)

    • Boltzmann Sigmoid B

      \(y = {(a - b)} / {(1.0 + \exp{({(x-c)}/{(dx)})})} + b\)

      [a, b, c, d]

  • Chapman (Chapman)

    • Chapman

      \(y = a * {(1.0 - \exp{(-bx)})}^{c}\)

      [a, b, c]

    • Chapman With Offset

      \(y = a * {(1.0 - \exp{(-bx)})}^{c} + \text{Offset}\)

      [a, b, c, Offset]

  • Don Levin Sigmoid (DonLevinSigmoid)

    • Don Levin Sigmoid

      \(y = a1 / {(1.0 + \exp{(-{(x-b1)}/c1)})} + a2 / {(1.0 + \exp{(-{(x-b2)}/c2)})} + a3 /{(1.0 + \exp{(-{(x-b3)}/c3)})}\)

      [a1, b1, c1, a2, b2, c2, a3, b3, c3]

    • Don Levin Sigmoid With Offset

      \(y = a1 / {(1.0 + \exp{(-{(x-b1)}/c1)})} + a2 / {(1.0 + \exp{(-{(x-b2)}/c2)})} + a3 /{(1.0 + \exp{(-{(x-b3)}/c3)})} + \text{Offset}\)

      [a1, b1, c1, a2, b2, c2, a3, b3, c3, Offset]

  • Five-Parameter Logistic (FiveParameterLogistic)

    • Five-Parameter Logistic

      \(y = d + {(a-d)} / {(1.0 + {(x/c)}^{b})}^{f}\)

      [a, b, c, d, f]

  • Four-Parameter Logistic (FourParameterLogistic)

    • Four-Parameter Logistic

      \(y = d + {(a-d)} / {(1.0 + {(x/c)}^{b})}\)

      [a, b, c, d]

  • Generalised Logistic (GeneralisedLogistic)

    • Generalised Logistic

      \(y = A + C / {(1 + T * \exp{(-B * {(x - M)})})}^{1/T}\)

      [A, C, M, B, T]

  • Gompertz A (GompertzA)

    • Gompertz A

      \(y = a * \exp{(-\exp{(b - cx)})}\)

      [a, b, c]

    • Gompertz A With Offset

      \(y = a * \exp{(-\exp{(b - cx)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Gompertz B (GompertzB)

    • Gompertz B

      \(y = a * \exp{(-\exp{({(x-b)}/c)})}\)

      [a, b, c]

    • Gompertz B With Offset

      \(y = a * \exp{(-\exp{({(x-b)}/c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Gompertz C (GompertzC)

    • Gompertz C

      \(y = a * \exp{(b * \exp{(c * x)})}\)

      [a, b, c]

    • Gompertz C With Offset

      \(y = a * \exp{(b * \exp{(c * x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Hill (Hill)

    • Hill

      \(y = ax^{b} / {(c^{b} +x^{b})}\)

      [a, b, c]

    • Hill With Offset

      \(y = ax^{b} / {(c^{b} +x^{b})} + \text{Offset}\)

      [a, b, c, Offset]

  • JJacquelin Generalised Logistic (JJacquelinGeneralisedLogistic)

    • JJacquelin Generalised Logistic

      \(y = L / {(1.0 + {(b * \exp{(-k*t)})} + {(c * \exp{(h*t)})})}\)

      [L, b, k, c, h]

    • JJacquelin Generalised Logistic With Offset

      \(y = L / {(1.0 + {(b * \exp{(-k*t)})} + {(c * \exp{(h*t)})})} + \text{Offset}\)

      [L, b, k, c, h, Offset]

  • Janoschek Growth (Janoschek)

    • Janoschek Growth

      \(w = a - {(1.0 - \exp{(-b * t^{c})})}\)

      [a, b, c]

  • Janoschek Growth Modified (Janoschek_Modified)

    • Janoschek Growth Modified

      \(w = a - {(a - w0)} * {(1.0 - \exp{(-b * t^{c})})}\)

      [a, b, c, w0]

  • Logistic A (LogisticA)

    • Logistic A

      \(y = a / {(1.0 + b*\exp{(-cx)})}\)

      [a, b, c]

    • Logistic A With Offset

      \(y = a / {(1.0 + b*\exp{(-cx)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Logistic B (LogisticB)

    • Logistic B

      \(y = a / {(1.0 + {(x/b)}^{c})}\)

      [a, b, c]

    • Logistic B With Offset

      \(y = a / {(1.0 + {(x/b)}^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Lomolino (Lomolino)

    • Lomolino

      \(y = a / {(1.0 + b^{ln{(c/x)}})}\)

      [a, b, c]

    • Lomolino With Offset

      \(y = a / {(1.0 + b^{ln{(c/x)}})} + \text{Offset}\)

      [a, b, c, Offset]

  • Magnetic Saturation (MagneticSaturation)

    • Magnetic Saturation

      \(y = ax * {(1.0 + b*\exp{(cx)})}\)

      [a, b, c]

    • Magnetic Saturation With Offset

      \(y = ax * {(1.0 + b*\exp{(cx)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Morgan-Mercer-Flodin (MMF) (MorganMercerFlodin)

    • Morgan-Mercer-Flodin (MMF)

      \(y = {(a * b + c * x^{d})} / {(b + x^{d})}\)

      [a, b, c, d]

    • Morgan-Mercer-Flodin (MMF) With Offset

      \(y = {(a * b + c * x^{d})} / {(b + x^{d})} +\text{Offset}\)

      [a, b, c, d, Offset]

  • Peters-Baskin Step-Stool: y (1) (PetersBaskin_Y)

    • Peters-Baskin Step-Stool: y (1)

      \(y = ln{(c + \exp{(b*d*x)})} / d\)

      [b, c, d]

    • Peters-Baskin Step-Stool: y (1) With Offset

      \(y = ln{(c + \exp{(b*d*x)})} / d + \text{Offset}\)

      [b, c, d, Offset]

  • Peters-Baskin Step-Stool: yI (2) (PetersBaskin_YI)

    • Peters-Baskin Step-Stool: yI (2)

      \(yI = ln{(\exp{(b2*c1*d1)} + \exp{(b2*d1*x)})} / d1\)

      [b2, c1, d1]

    • Peters-Baskin Step-Stool: yI (2) With Offset

      \(yI = ln{(\exp{(b2*c1*d1)} + \exp{(b2*d1*x)})} / d1 + \text{Offset}\)

      [b2, c1, d1, Offset]

  • Peters-Baskin Step-Stool: yII (3) (PetersBaskin_YII)

    • Peters-Baskin Step-Stool: yII (3)

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1\)

      [b2, c1, d1, b1]

    • Peters-Baskin Step-Stool: yII (3) With Offset

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1 + \text{Offset}\)

      [b2, c1, d1, b1, Offset]

  • Peters-Baskin Step-Stool: yIII (6) (PetersBaskin_YIII)

    • Peters-Baskin Step-Stool: yIII (6)

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1\\L = ln{( \exp{(b2*c1*d1)} + \exp{(b2*c2*d1)} )}\\yIII = yII - ln{( \exp{(d2*{(b1*c1 + L/d1)})} + \exp{(d2*yII)} )} / d2\)

      [b2, c1, d1, b1, c2, d2]

    • Peters-Baskin Step-Stool: yIII (6) With Offset

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1\\L = ln{( \exp{(b2*c1*d1)} + \exp{(b2*c2*d1)} )}\\yIII = yII - ln{( \exp{(d2*{(b1*c1 + L/d1)})} + \exp{(d2*yII)} )} / d2 + \text{Offset}\)

      [b2, c1, d1, b1, c2, d2, Offset]

  • Peters-Baskin Step-Stool: yIV (9) (PetersBaskin_YIV)

    • Peters-Baskin Step-Stool: yIV (9)

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1\\L = ln{( \exp{(b2*c1*d1)} + \exp{(b2*c2*d1)} )}\\yIII = yII - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII)} )} / d2\\yII,0 = ln{(\exp{(b2*c1*d1)} + 1.0 )} / d1\\yIII,0 = yII,0 - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII,0)} )} / d2\\yIV = yIII - yIII,0\)

      [b2, c1, d1, b1, c2, d2]

    • Peters-Baskin Step-Stool: yIV (9) With Offset

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1\\L = ln{( \exp{(b2*c1*d1)} + \exp{(b2*c2*d1)} )}\\yIII = yII - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII)} )} / d2\\yII,0 = ln{(\exp{(b2*c1*d1)} + 1.0 )} / d1\\yIII,0 = yII,0 - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII,0)} )} / d2\\yIV = yIII - yIII,0 + \text{Offset}\)

      [b2, c1, d1, b1, c2, d2, Offset]

  • Peters-Baskin Step-Stool: yV (10) (PetersBaskin_YV)

    • Peters-Baskin Step-Stool: yV (10)

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1\\L = ln{( \exp{(b2*c1*d1)} + \exp{(b2*c2*d1)} )}\\yIII = yII - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII)} )} / d2\\yII,0 = ln{(\exp{(b2*c1*d1)} + 1.0 )} / d1\\yIII,0 = yII,0 - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII,0)} )} / d2\\yIV = yIII - yIII,0 + q\)

      [b2, c1, d1, b1, c2, d2, q]

  • Peters-Baskin Step-Stool: yV (10) Scaled (PetersBaskin_YV_Scaled)

    • Peters-Baskin Step-Stool: yV (10) Scaled

      \(K = ln{( \exp{(b2*c1*d1)} + \exp{(b2*d1*x)} )}\\yII = b1*x + K/d1\\L = ln{( \exp{(b2*c1*d1)} + \exp{(b2*c2*d1)} )}\\yIII = yII - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII)} )} / d2\\yII,0 = ln{(\exp{(b2*c1*d1)} + 1.0 )} / d1\\yIII,0 = yII,0 - ln{( \exp{(d2*{(b1*c2 + L/d1)})} + \exp{(d2*yII,0)} )} / d2\\yIV = scale * {(yIII - yIII,0 )}+ q\)

      [b2, c1, d1, b1, c2, d2, q, scale]

  • Richards (Richards)

    • Richards

      \(y = 1.0 / {(a + b * e^{{(c*x)}})}^{d}\)

      [a, b, c, d]

    • Richards With Offset

      \(y = 1.0 / {(a + b * e^{{(c*x)}})}^{d} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Sigmoid A (SigmoidA)

    • Sigmoid A

      \(y = 1.0 / {(1.0 + \exp{(-a{(x-b)})})}\)

      [a, b]

    • Sigmoid A With Offset

      \(y = 1.0 / {(1.0 + \exp{(-a{(x-b)})})} + \text{Offset}\)

      [a, b, Offset]

  • Sigmoid A Modified (SigmoidA_Modified)

    • Sigmoid A Modified

      \(y = 1.0 / {(1.0 + \exp{(-a{(x-b)})})}^{c}\)

      [a, b, c]

    • Sigmoid A Modified With Offset

      \(y = 1.0 / {(1.0 + \exp{(-a{(x-b)})})}^{c} + \text{Offset}\)

      [a, b, c, Offset]

  • Sigmoid B (SigmoidB)

    • Sigmoid B

      \(y = a / {(1.0 + \exp{(-{(x-b)}/c)})}\)

      [a, b, c]

    • Sigmoid B With Offset

      \(y = a / {(1.0 + \exp{(-{(x-b)}/c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Sigmoid B Modified (SigmoidB_Modified)

    • Sigmoid B Modified

      \(y = a / {(1.0 + \exp{(-{(x-b)}/c)})}^{d}\)

      [a, b, c, d]

    • Sigmoid B Modified With Offset

      \(y = a / {(1.0 + \exp{(-{(x-b)}/c)})}^{d} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Weibull (Weibull)

    • Weibull

      \(y = a - b*\exp{(-cx^{d})}\)

      [a, b, c, d]

  • Weibull CDF (WeibullCDF)

    • Weibull CDF

      \(y = 1.0 - \exp{(-{(x/b)}^{a})}\)

      [a, b]

    • Weibull CDF With Offset

      \(y = 1.0 - \exp{(-{(x/b)}^{a})} + \text{Offset}\)

      [a, b, Offset]

  • Weibull CDF Scaled (WeibullCDF_scaled)

    • Weibull CDF Scaled

      \(y = Scale * {(1.0 - \exp{(-{(x/b)}^{a})})}\)

      [a, b, Scale]

    • Weibull CDF Scaled With Offset

      \(y = Scale * {(1.0 - \exp{(-{(x/b)}^{a})})} + \text{Offset}\)

      [a, b, Scale, Offset]

  • Weibull PDF (WeibullPDF)

    • Weibull PDF

      \(y = {(a/b)} * {(x/b)}^{{(a-1.0)}} *\exp{(-{(x/b)}^{a})}\)

      [a, b]

    • Weibull PDF With Offset

      \(y = {(a/b)} * {(x/b)}^{{(a-1.0)}} *\exp{(-{(x/b)}^{a})} + \text{Offset}\)

      [a, b, Offset]

Simple

  • Simple Equation 01 (SimpleEquation_01)

    • Simple Equation 01

      \(y = a\)

      [a]

  • Simple Equation 02 (SimpleEquation_02)

    • Simple Equation 02

      \(y = a/pow{(x,-2.0)}\)

      [a]

    • Simple Equation 02 With Offset

      \(y = a/pow{(x,-2.0)} + \text{Offset}\)

      [a, Offset]

  • Simple Equation 03 (SimpleEquation_03)

    • Simple Equation 03

      \(y = a*pow{(ln{(x)},b)}\)

      [a, b]

    • Simple Equation 03 With Offset

      \(y = a*pow{(ln{(x)},b)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 04 (SimpleEquation_04)

    • Simple Equation 04

      \(y = a*pow{(x,3.0)}\)

      [a]

    • Simple Equation 04 With Offset

      \(y = a*pow{(x,3.0)} + \text{Offset}\)

      [a, Offset]

  • Simple Equation 05 (SimpleEquation_05)

    • Simple Equation 05

      \(y = a*pow{(x,4.0)}\)

      [a]

    • Simple Equation 05 With Offset

      \(y = a*pow{(x,4.0)} + \text{Offset}\)

      [a, Offset]

  • Simple Equation 06 (SimpleEquation_06)

    • Simple Equation 06

      \(y = x/{(a+b*pow{(x,2.0)})}\)

      [a, b]

    • Simple Equation 06 With Offset

      \(y = x/{(a+b*pow{(x,2.0)})} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 07 (SimpleEquation_07)

    • Simple Equation 07

      \(y = a * pow{(b,x)} * pow{(x,c)}\)

      [a, b, c]

    • Simple Equation 07 With Offset

      \(y = a * pow{(b,x)} * pow{(x,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 08 (SimpleEquation_08)

    • Simple Equation 08

      \(y = a*pow{(b,1.0/x)}*pow{(x,c)}\)

      [a, b, c]

    • Simple Equation 08 With Offset

      \(y = a*pow{(b,1.0/x)}*pow{(x,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 09 (SimpleEquation_09)

    • Simple Equation 09

      \(y = a*\exp{(pow{(x-b,2.0)}/c)}\)

      [a, b, c]

    • Simple Equation 09 With Offset

      \(y = a*\exp{(pow{(x-b,2.0)}/c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 10 (SimpleEquation_10)

    • Simple Equation 10

      \(y = a*\exp{(pow{(ln{(x)}-b,2.0)}/c)}\)

      [a, b, c]

    • Simple Equation 10 With Offset

      \(y = a*\exp{(pow{(ln{(x)}-b,2.0)}/c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 13 (SimpleEquation_13)

    • Simple Equation 13

      \(y = a*pow{(x/b,c)}*\exp{(x/b)}\)

      [a, b, c]

    • Simple Equation 13 With Offset

      \(y = a*pow{(x/b,c)}*\exp{(x/b)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 14 (SimpleEquation_14)

    • Simple Equation 14

      \(y = a*pow{(x,b+c*x)}\)

      [a, b, c]

    • Simple Equation 14 With Offset

      \(y = a*pow{(x,b+c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 15 (SimpleEquation_15)

    • Simple Equation 15

      \(y = a*pow{(x,b+c/x)}\)

      [a, b, c]

    • Simple Equation 15 With Offset

      \(y = a*pow{(x,b+c/x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 16 (SimpleEquation_16)

    • Simple Equation 16

      \(y = a*pow{(x,b+c*ln{(x)})}\)

      [a, b, c]

    • Simple Equation 16 With Offset

      \(y = a*pow{(x,b+c*ln{(x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 17 (SimpleEquation_17)

    • Simple Equation 17

      \(y = a*pow{(x,b*x+c*pow{(x,2.0)})}\)

      [a, b, c]

    • Simple Equation 17 With Offset

      \(y = a*pow{(x,b*x+c*pow{(x,2.0)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 18 (SimpleEquation_18)

    • Simple Equation 18

      \(y = a*\exp{(b*x+c*pow{(x,0.5)})}\)

      [a, b, c]

    • Simple Equation 18 With Offset

      \(y = a*\exp{(b*x+c*pow{(x,0.5)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 19 (SimpleEquation_19)

    • Simple Equation 19

      \(y = a*\exp{(b/x+c*x)}\)

      [a, b, c]

    • Simple Equation 19 With Offset

      \(y = a*\exp{(b/x+c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 20 (SimpleEquation_20)

    • Simple Equation 20

      \(y = {(a+x)}/{(b+c*x)}\)

      [a, b, c]

    • Simple Equation 20 With Offset

      \(y = {(a+x)}/{(b+c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 21 (SimpleEquation_21)

    • Simple Equation 21

      \(y = {(a+x)}/{(b+c*pow{(x,2.0)})}\)

      [a, b, c]

    • Simple Equation 21 With Offset

      \(y = {(a+x)}/{(b+c*pow{(x,2.0)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 22 (SimpleEquation_22)

    • Simple Equation 22

      \(y = a*{(\exp{(b*x)}-\exp{(c*x)})}\)

      [a, b, c]

    • Simple Equation 22 With Offset

      \(y = a*{(\exp{(b*x)}-\exp{(c*x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 23 (SimpleEquation_23)

    • Simple Equation 23

      \(y = a*\exp{(b*\exp{(c*x)})}\)

      [a, b, c]

    • Simple Equation 23 With Offset

      \(y = a*\exp{(b*\exp{(c*x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 24 (SimpleEquation_24)

    • Simple Equation 24

      \(y = a/{(1.0 + b * \exp{(c*x)})}\)

      [a, b, c]

    • Simple Equation 24 With Offset

      \(y = a/{(1.0 + b * \exp{(c*x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 25 (SimpleEquation_25)

    • Simple Equation 25

      \(y = a/{(b+pow{(x,c)})}\)

      [a, b, c]

    • Simple Equation 25 With Offset

      \(y = a/{(b+pow{(x,c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 26 (SimpleEquation_26)

    • Simple Equation 26

      \(y = a/pow{(1.0 + b * pow{(x,c)},2.0)}\)

      [a, b, c]

    • Simple Equation 26 With Offset

      \(y = a/pow{(1.0 + b * pow{(x,c)},2.0)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 27 (SimpleEquation_27)

    • Simple Equation 27

      \(y = pow{(a+b*x,c)}\)

      [a, b, c]

    • Simple Equation 27 With Offset

      \(y = pow{(a+b*x,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 28 (SimpleEquation_28)

    • Simple Equation 28

      \(y = \exp{(a+b/x+c*ln{(x)})}\)

      [a, b, c]

    • Simple Equation 28 With Offset

      \(y = \exp{(a+b/x+c*ln{(x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 29 (SimpleEquation_29)

    • Simple Equation 29

      \(y = a*\exp{(b*pow{(x,c)})}\)

      [a, b, c]

    • Simple Equation 29 With Offset

      \(y = a*\exp{(b*pow{(x,c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 30 (SimpleEquation_30)

    • Simple Equation 30

      \(y = a*pow{(x,b*pow{(x,c)})}\)

      [a, b, c]

    • Simple Equation 30 With Offset

      \(y = a*pow{(x,b*pow{(x,c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 31 (SimpleEquation_31)

    • Simple Equation 31

      \(y = a*ln{(x+b)}\)

      [a, b]

    • Simple Equation 31 With Offset

      \(y = a*ln{(x+b)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 32 (SimpleEquation_32)

    • Simple Equation 32

      \(y = a/x+b*pow{(x,c)}\)

      [a, b, c]

    • Simple Equation 32 With Offset

      \(y = a/x+b*pow{(x,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 33 (SimpleEquation_33)

    • Simple Equation 33

      \(y = a/x+b*\exp{(c/x)}\)

      [a, b, c]

    • Simple Equation 33 With Offset

      \(y = a/x+b*\exp{(c/x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 34 (SimpleEquation_34)

    • Simple Equation 34

      \(y = a/x+b*\exp{(c*x)}\)

      [a, b, c]

    • Simple Equation 34 With Offset

      \(y = a/x+b*\exp{(c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 35 (SimpleEquation_35)

    • Simple Equation 35

      \(y = a*\exp{(b*x)}/x\)

      [a, b]

    • Simple Equation 35 With Offset

      \(y = a*\exp{(b*x)}/x + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 36 (SimpleEquation_36)

    • Simple Equation 36

      \(y = a*\exp{(b/x)}/x\)

      [a, b]

    • Simple Equation 36 With Offset

      \(y = a*\exp{(b/x)}/x + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 37 (SimpleEquation_37)

    • Simple Equation 37

      \(y = a*pow{(x,b)}*ln{(x)}\)

      [a, b]

    • Simple Equation 37 With Offset

      \(y = a*pow{(x,b)}*ln{(x)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 38 (SimpleEquation_38)

    • Simple Equation 38

      \(y = a*pow{(x,b)}/ln{(x)}\)

      [a, b]

    • Simple Equation 38 With Offset

      \(y = a*pow{(x,b)}/ln{(x)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 39 (SimpleEquation_39)

    • Simple Equation 39

      \(y = a*pow{(x,b)}*ln{(x+c)}\)

      [a, b, c]

    • Simple Equation 39 With Offset

      \(y = a*pow{(x,b)}*ln{(x+c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 40 (SimpleEquation_40)

    • Simple Equation 40

      \(y = a*pow{(ln{(x+b)},c)}\)

      [a, b, c]

    • Simple Equation 40 With Offset

      \(y = a*pow{(ln{(x+b)},c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 41 (SimpleEquation_41)

    • Simple Equation 41

      \(y = a*pow{(x,b/x)}+c*x\)

      [a, b, c]

    • Simple Equation 41 With Offset

      \(y = a*pow{(x,b/x)}+c*x + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 42 (SimpleEquation_42)

    • Simple Equation 42

      \(y = a*pow{(x,b/x)}+c*ln{(x)}\)

      [a, b, c]

    • Simple Equation 42 With Offset

      \(y = a*pow{(x,b/x)}+c*ln{(x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Reciprocal (SimpleReciprocalA)

    • Simple Reciprocal

      \(y = a / x\)

      [a]

    • Simple Reciprocal With Offset

      \(y = a / x + \text{Offset}\)

      [a, Offset]

Spline

  • Spline (Spline)

    • Spline

      \(y = B-Spline Interpolation Curve\)

Trigonometric

  • Great Circle [Degrees] (GreatCircleDegrees)

    • Great Circle [Degrees]

      \(latitude = arctan{(A*cos{({(B + longitude)} / 57.2957795131)})} *57.2957795131\)

      [A, B]

  • Great Circle [radians] (GreatCircleRadians)

    • Great Circle [radians]

      \(latitude = arctan{(A*cos{(B + longitude)})}\)

      [A, B]

  • Hyperbolic Cosine [radians] (HyperbolicCosine)

    • Hyperbolic Cosine [radians]

      \(y = amplitude * cosh{(pi * {(x - center)} / width)}\)

      [amplitude, center, width]

    • Hyperbolic Cosine [radians] With Offset

      \(y = amplitude * cosh{(pi * {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Hyperbolic Cosine [radians] (Nyquist Limited) (HyperbolicCosine_NyquistLimited)

    • Hyperbolic Cosine [radians] (Nyquist Limited)

      \(y = amplitude * cosh{(pi * {(x - center)} / width)}\)

      [amplitude, center, width]

    • Hyperbolic Cosine [radians] (Nyquist Limited) With Offset

      \(y = amplitude * cosh{(pi * {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Cardinal Sine (sinc) [radians] (Sinc)

    • Cardinal Sine (sinc) [radians]

      \(y = amplitude * sin{(pi * {(x - center)} / width)} / {(pi * {(x - center)} /width)}\)

      [amplitude, center, width]

    • Cardinal Sine (sinc) [radians] With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)} / {(pi * {(x - center)} /width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Cardinal Sine (sinc) Squared [radians] (SincSquared)

    • Cardinal Sine (sinc) Squared [radians]

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2} / {(pi* {(x - center)} / width)}\)

      [amplitude, center, width]

    • Cardinal Sine (sinc) Squared [radians] With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2} / {(pi* {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Cardinal Sine (sinc) Squared [radians] (Nyquist Limited) (SincSquared_NyquistLimited)

    • Cardinal Sine (sinc) Squared [radians] (Nyquist Limited)

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2} / {(pi* {(x - center)} / width)}\)

      [amplitude, center, width]

    • Cardinal Sine (sinc) Squared [radians] (Nyquist Limited) With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2} / {(pi* {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Cardinal Sine (sinc) [radians] (Nyquist Limited) (Sinc_NyquistLimited)

    • Cardinal Sine (sinc) [radians] (Nyquist Limited)

      \(y = amplitude * sin{(pi * {(x - center)} / width)} / {(pi * {(x - center)} /width)}\)

      [amplitude, center, width]

    • Cardinal Sine (sinc) [radians] (Nyquist Limited) With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)} / {(pi * {(x - center)} /width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Sine [radians] (Sine)

    • Sine [radians]

      \(y = amplitude * sin{(pi * {(x - center)} / width)}\)

      [amplitude, center, width]

    • Sine [radians] With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Sine Squared [radians] (SineSquared)

    • Sine Squared [radians]

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2}\)

      [amplitude, center, width]

    • Sine Squared [radians] With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2} +\text{Offset}\)

      [amplitude, center, width, Offset]

  • Sine Squared [radians] (Nyquist Limited) (SineSquared_NyquistLimited)

    • Sine Squared [radians] (Nyquist Limited)

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2}\)

      [amplitude, center, width]

    • Sine Squared [radians] (Nyquist Limited) With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)}^{2} +\text{Offset}\)

      [amplitude, center, width, Offset]

  • Sine [radians] (Nyquist Limited) (Sine_NyquistLimited)

    • Sine [radians] (Nyquist Limited)

      \(y = amplitude * sin{(pi * {(x - center)} / width)}\)

      [amplitude, center, width]

    • Sine [radians] (Nyquist Limited) With Offset

      \(y = amplitude * sin{(pi * {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Tangent [radians] (Tangent)

    • Tangent [radians]

      \(y = amplitude * tan{(pi * {(x - center)} / width)}\)

      [amplitude, center, width]

    • Tangent [radians] With Offset

      \(y = amplitude * tan{(pi * {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Tangent [radians] (Nyquist Limited) (Tangent_NyquistLimited)

    • Tangent [radians] (Nyquist Limited)

      \(y = amplitude * tan{(pi * {(x - center)} / width)}\)

      [amplitude, center, width]

    • Tangent [radians] (Nyquist Limited) With Offset

      \(y = amplitude * tan{(pi * {(x - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

UserDefinedFunction

  • User Defined Function (UserDefinedFunction)

    • User Defined Function

      \(y = User Defined Function\)

YieldDensity

  • Bleasdale (Bleasdale)

    • Bleasdale

      \(y = 1.0 / {(a + bx)}^{{(-1.0/c)}}\)

      [a, b, c]

    • Bleasdale With Offset

      \(y = 1.0 / {(a + bx)}^{{(-1.0/c)}} + \text{Offset}\)

      [a, b, c, Offset]

  • Extended Holliday (ExtendedHolliday)

    • Extended Holliday

      \(y = a / {(a + bx + cx^{2})}\)

      [a, b, c]

    • Extended Holliday With Offset

      \(y = a / {(a + bx + cx^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Harris (Harris)

    • Harris

      \(y = 1.0 / {(a + bx^{c})}\)

      [a, b, c]

    • Harris With Offset

      \(y = 1.0 / {(a + bx^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Holliday (Holliday)

    • Holliday

      \(y = 1.0 / {(a + bx + cx^{2})}\)

      [a, b, c]

    • Holliday With Offset

      \(y = 1.0 / {(a + bx + cx^{2})} + \text{Offset}\)

      [a, b, c, Offset]

  • Inverse Bleasdale (InverseBleasdale)

    • Inverse Bleasdale

      \(y = x / {(a + bx)}^{{(-1.0/c)}}\)

      [a, b, c]

    • Inverse Bleasdale With Offset

      \(y = x / {(a + bx)}^{{(-1.0/c)}} + \text{Offset}\)

      [a, b, c, Offset]

  • InverseHarris (InverseHarris)

    • InverseHarris

      \(y = x / {(a + bx^{c})}\)

      [a, b, c]

    • InverseHarris With Offset

      \(y = x / {(a + bx^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Nelder (Nelder)

    • Nelder

      \(y = {(a + x)} / {(b + c{(a + x)} + d{(a + x)}^{2})}\)

      [a, b, c, d]

    • Nelder With Offset

      \(y = {(a + x)} / {(b + c{(a + x)} + d{(a + x)}^{2})} + \text{Offset}\)

      [a, b, c, d, Offset]

3D Models

BioScience

  • Chen-Clayton (ChenClayton)

    • Chen-Clayton

      \(r.h.{(T_{k},M)} = \exp{(-{(C1/T^{C2})} *\exp{(-C3*T^{C4}*M)})}\)

      [C1, C2, C3, C4]

    • Chen-Clayton With Offset

      \(r.h.{(T_{k},M)} = \exp{(-{(C1/T^{C2})} *\exp{(-C3*T^{C4}*M)})} + \text{Offset}\)

      [C1, C2, C3, C4, Offset]

  • Chen-Clayton Scaled (ChenClayton_scaled)

    • Chen-Clayton Scaled

      \(z = Scale * \exp{(-{(C1/T^{C2})} *\exp{(-C3*T^{C4}*M)})}\)

      [C1, C2, C3, C4, Scale]

    • Chen-Clayton Scaled With Offset

      \(z = Scale * \exp{(-{(C1/T^{C2})} *\exp{(-C3*T^{C4}*M)})} + \text{Offset}\)

      [C1, C2, C3, C4, Scale, Offset]

  • High-Low Affinity Double Isotope Displacement (y = [Hot]) (HighLowAffinityDoubleIsotopeDisplacement)

    • High-Low Affinity Double Isotope Displacement (y = [Hot])

      \(z = aby / {(1+b{(x+y)})} + cdy / {(1+d{(x+y)})}\)

      [a, b, c, d]

    • High-Low Affinity Double Isotope Displacement (y = [Hot]) With Offset

      \(z = aby / {(1+b{(x+y)})} + cdy / {(1+d{(x+y)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • High-Low Affinity Isotope Displacement (y = [Hot]) (HighLowAffinityIsotopeDisplacement)

    • High-Low Affinity Isotope Displacement (y = [Hot])

      \(z = aby / {(1+b{(x+y)})}\)

      [a, b]

    • High-Low Affinity Isotope Displacement (y = [Hot]) With Offset

      \(z = aby / {(1+b{(x+y)})} + \text{Offset}\)

      [a, b, Offset]

  • Logistic Growth (LogisticGrowth)

    • Logistic Growth

      \(z = a / {(1 + \exp{(-{(b + cx + dy + fxy)})})} + g\)

      [a, b, c, d, f, g]

  • Michaelis-Menten Double Isotope Displacement (y = [Hot]) (MichaelisMentenDoubleIsotopeDisplacement)

    • Michaelis-Menten Double Isotope Displacement (y = [Hot])

      \(z = ay / {(b + x + y)} + cy / {(d + x + y)}\)

      [a, b, c, d]

    • Michaelis-Menten Double Isotope Displacement (y = [Hot]) With Offset

      \(z = ay / {(b + x + y)} + cy / {(d + x + y)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Michaelis-Menten Isotope Displacement (y = [Hot]) (MichaelisMentenIsotopeDisplacement)

    • Michaelis-Menten Isotope Displacement (y = [Hot])

      \(z = ay / {(b + x + y)}\)

      [a, b]

    • Michaelis-Menten Isotope Displacement (y = [Hot]) With Offset

      \(z = ay / {(b + x + y)} + \text{Offset}\)

      [a, b, Offset]

  • Modified Chung-Pfost (ModifiedChungPfost)

    • Modified Chung-Pfost

      \(r.h.{(T,M)} = \exp{(-{(C1/{(T+C2)})} * \exp{(-C3*M)})}\)

      [C1, C2, C3]

    • Modified Chung-Pfost With Offset

      \(r.h.{(T,M)} = \exp{(-{(C1/{(T+C2)})} * \exp{(-C3*M)})} + \text{Offset}\)

      [C1, C2, C3, Offset]

  • Modified Halsey (ModifiedHalsey)

    • Modified Halsey

      \(r.h.{(T,M)} = \exp{(-\exp{(C1 + C2*T)} * M^{-C3})}\)

      [C1, C2, C3]

    • Modified Halsey With Offset

      \(r.h.{(T,M)} = \exp{(-\exp{(C1 + C2*T)} * M^{-C3})} + \text{Offset}\)

      [C1, C2, C3, Offset]

  • Modified Halsey Scaled (ModifiedHalsey_scaled)

    • Modified Halsey Scaled

      \(z = Scale * \exp{(-\exp{(C1 + C2*T)} * M^{-C3})}\)

      [C1, C2, C3, Scale]

    • Modified Halsey Scaled With Offset

      \(z = Scale * \exp{(-\exp{(C1 + C2*T)} * M^{-C3})} + \text{Offset}\)

      [C1, C2, C3, Scale, Offset]

  • Modified Henderson (ModifiedHenderson)

    • Modified Henderson

      \(r.h.{(T,M)} = 1 - \exp{(-C1 * {(T + C2)} * M^{C3})}\)

      [C1, C2, C3]

    • Modified Henderson With Offset

      \(r.h.{(T,M)} = 1 - \exp{(-C1 * {(T + C2)} * M^{C3})} + \text{Offset}\)

      [C1, C2, C3, Offset]

  • Strohman-Yoerger (StrohmanYoerger)

    • Strohman-Yoerger

      \(r.h.{(P_{s},M)} = \exp{(C1*\exp{(-C2*M)}*ln{(P_{s})} -C3*\exp{(-C4*M)})}\)

      [C1, C2, C3, C4]

    • Strohman-Yoerger With Offset

      \(r.h.{(P_{s},M)} = \exp{(C1*\exp{(-C2*M)}*ln{(P_{s})} -C3*\exp{(-C4*M)})} + \text{Offset}\)

      [C1, C2, C3, C4, Offset]

EnzymeKinetics

  • Competitive Inhibition A (CompetitiveInhibitionA)

    • Competitive Inhibition A

      \(z = ax / {(b{(1 + y/c)} + x)}\)

      [a, b, c]

    • Competitive Inhibition A With Offset

      \(z = ax / {(b{(1 + y/c)} + x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Competitive Inhibition B (CompetitiveInhibitionB)

    • Competitive Inhibition B

      \(z = ay / {(b{(1 + x/c)} + y)}\)

      [a, b, c]

    • Competitive Inhibition B With Offset

      \(z = ay / {(b{(1 + x/c)} + y)} + \text{Offset}\)

      [a, b, c, Offset]

  • Competitive Inhibition C (CompetitiveInhibitionC)

    • Competitive Inhibition C

      \(z = axy / {(b{(1 + x/c)} + y)}\)

      [a, b, c]

    • Competitive Inhibition C With Offset

      \(z = axy / {(b{(1 + x/c)} + y)} + \text{Offset}\)

      [a, b, c, Offset]

  • Inhibition By Competing Substrate A (InhibitionByCompetingSubstrateA)

    • Inhibition By Competing Substrate A

      \(z = {(ax/b)} / {(1 + x/b + y/c)}\)

      [a, b, c]

    • Inhibition By Competing Substrate A With Offset

      \(z = {(ax/b)} / {(1 + x/b + y/c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Inhibition By Competing Substrate B (InhibitionByCompetingSubstrateB)

    • Inhibition By Competing Substrate B

      \(z = {(ay/b)} / {(1 + y/b + x/c)}\)

      [a, b, c]

    • Inhibition By Competing Substrate B With Offset

      \(z = {(ay/b)} / {(1 + y/b + x/c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Inhibition By Competing Substrate C (InhibitionByCompetingSubstrateC)

    • Inhibition By Competing Substrate C

      \(z = {(axy/b)} / {(1 + y/b + x/c)}\)

      [a, b, c]

    • Inhibition By Competing Substrate C With Offset

      \(z = {(axy/b)} / {(1 + y/b + x/c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Michaelis Menten Product Inhibition (MichaelisMentenProductInhibition)

    • Michaelis Menten Product Inhibition

      \(z = {(ax/b - cy/d)} / {(1 + x/b + y/d)}\)

      [a, b, c, d]

    • Michaelis Menten Product Inhibition With Offset

      \(z = {(ax/b - cy/d)} / {(1 + x/b + y/d)} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Mixed Inhibition A (MixedInhibitionA)

    • Mixed Inhibition A

      \(z = ax / {(b{(1 + y/c)} + x{(1 + y/d)})}\)

      [a, b, c, d]

    • Mixed Inhibition A With Offset

      \(z = ax / {(b{(1 + y/c)} + x{(1 + y/d)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Mixed Inhibition B (MixedInhibitionB)

    • Mixed Inhibition B

      \(z = ay / {(b{(1 + x/c)} + y{(1 + x/d)})}\)

      [a, b, c, d]

    • Mixed Inhibition B With Offset

      \(z = ay / {(b{(1 + x/c)} + y{(1 + x/d)})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Noncompetitive Inhibition A (NoncompetitiveInhibitionA)

    • Noncompetitive Inhibition A

      \(z = ax / {({(b + x)}{(1 + y/c)})}\)

      [a, b, c]

    • Noncompetitive Inhibition A With Offset

      \(z = ax / {({(b + x)}{(1 + y/c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Noncompetitive Inhibition B (NoncompetitiveInhibitionB)

    • Noncompetitive Inhibition B

      \(z = ay / {({(b + y)}{(1 + x/c)})}\)

      [a, b, c]

    • Noncompetitive Inhibition B With Offset

      \(z = ay / {({(b + y)}{(1 + x/c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Ping Pong Bi Bi A (PingPongBiBiA)

    • Ping Pong Bi Bi A

      \(z = ax / {(bx + cy + xy)}\)

      [a, b, c]

    • Ping Pong Bi Bi A With Offset

      \(z = ax / {(bx + cy + xy)} + \text{Offset}\)

      [a, b, c, Offset]

  • Ping Pong Bi Bi B (PingPongBiBiB)

    • Ping Pong Bi Bi B

      \(z = ay / {(by + cx + xy)}\)

      [a, b, c]

    • Ping Pong Bi Bi B With Offset

      \(z = ay / {(by + cx + xy)} + \text{Offset}\)

      [a, b, c, Offset]

  • Ping Pong Bi Bi C (PingPongBiBiC)

    • Ping Pong Bi Bi C

      \(z = axy / {(by + cx + xy)}\)

      [a, b, c]

    • Ping Pong Bi Bi C With Offset

      \(z = axy / {(by + cx + xy)} + \text{Offset}\)

      [a, b, c, Offset]

  • Uncompetitive Inhibition A (UncompetitiveInhibitionA)

    • Uncompetitive Inhibition A

      \(z = ax / {(b + x{(1 + y/c)})}\)

      [a, b, c]

    • Uncompetitive Inhibition A With Offset

      \(z = ax / {(b + x{(1 + y/c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Uncompetitive Inhibition B (UncompetitiveInhibitionB)

    • Uncompetitive Inhibition B

      \(z = ay / {(b + y{(1 + x/c)})}\)

      [a, b, c]

    • Uncompetitive Inhibition B With Offset

      \(z = ay / {(b + y{(1 + x/c)})} + \text{Offset}\)

      [a, b, c, Offset]

Exponential

  • Full Cubic Exponential (FullCubicExponential)

    • Full Cubic Exponential

      \(z = a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}^{2} +f*\exp{(y)}^{2} + g*\exp{(x)}^{3} +h*\exp{(y)}^{3} + i*\exp{(x)}*\exp{(y)} +j*\exp{(x)}^{2}*\exp{(y)} + k*\exp{(x)}*\exp{(y)}^{2}\)

      [a, b, c, d, f, g, h, i, j, k]

  • Transform Full Cubic Exponential (FullCubicExponentialTransform)

    • Transform Full Cubic Exponential

      \(z = a + b*\exp{(m*x+n)} + c*\exp{(o*y+p)} + d*\exp{(m*x+n)}^{2} +f*\exp{(o*y+p)}^{2} + g*\exp{(m*x+n)}^{3} +h*\exp{(o*y+p)}^{3} + i*\exp{(m*x+n)}*\exp{(o*y+p)} +j*\exp{(m*x+n)}^{2}*\exp{(o*y+p)} +k*\exp{(m*x+n)}*\exp{(o*y+p)}^{2}\)

      [a, b, c, d, f, g, h, i, j, k, m, n, o, p]

  • Full Quadratic Exponential (FullQuadraticExponential)

    • Full Quadratic Exponential

      \(z = a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}^{2} +f*\exp{(y)}^{2} + g*\exp{(x)}*\exp{(y)}\)

      [a, b, c, d, f, g]

  • Transform Full Quadratic Exponential (FullQuadraticExponentialTransform)

    • Transform Full Quadratic Exponential

      \(z = a + b*\exp{(h*x+i)} + c*\exp{(j*y+k)} + d*\exp{(h*x+i)}^{2} +e*\exp{(j*y+k)}^{2} + f*\exp{(h*x+i)}*\exp{(j*y+k)}\)

      [a, b, c, d, f, g, h, i, j, k]

  • Linear Exponential (LinearExponential)

    • Linear Exponential

      \(z = a + b*\exp{(x)} + c*\exp{(y)}\)

      [a, b, c]

  • Transform Linear Exponential (LinearExponentialTransform)

    • Transform Linear Exponential

      \(z = a + b*\exp{(d*x+f)} + c*\exp{(g*y+h)}\)

      [a, b, c, d, f, g, h]

  • Simplified Cubic Exponential (SimplifiedCubicExponential)

    • Simplified Cubic Exponential

      \(z = a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}^{2} +e*\exp{(y)}^{2} + f*\exp{(x)}^{3} +g*\exp{(y)}^{3}\)

      [a, b, c, d, f, g, h]

  • Transform Simplified Cubic Exponential (SimplifiedCubicExponentialTransform)

    • Transform Simplified Cubic Exponential

      \(z = a + b*\exp{(i*x+j)} + c*\exp{(k*y+m)} + d*\exp{(i*x+j)}^{2} +f*\exp{(k*y+m)}^{2} + g*\exp{(i*x+j)}^{3} +h*\exp{(k*y+m)}^{3}\)

      [a, b, c, d, f, g, h, i, j, k, m]

  • Simplified Quadratic Exponential (SimplifiedQuadraticExponential)

    • Simplified Quadratic Exponential

      \(z = a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}^{2} +f*\exp{(y)}^{2}\)

      [a, b, c, d, f]

  • Transform Simplified Quadratic Exponential (SimplifiedQuadraticExponentialTransform)

    • Transform Simplified Quadratic Exponential

      \(z = a + b*\exp{(g*x+h)} + c*\exp{(i*y+j)} + d*\exp{(g*x+h)}^{2} +f*\exp{(i*y+j)}^{2}\)

      [a, b, c, d, f, g, h, i, j]

Logarithmic

  • Full Cubic Logarithmic (FullCubicLogarithmic)

    • Full Cubic Logarithmic

      \(z = a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}^{2} +f*ln{(y)}^{2} + g*ln{(x)}^{3} +h*ln{(y)}^{3} + i*ln{(x)}*ln{(y)} +j*ln{(x)}^{2}*ln{(y)} + k*ln{(x)}*ln{(y)}^{2}\)

      [a, b, c, d, f, g, h, i, j, k]

  • Transform Full Cubic Logarithmic (FullCubicLogarithmicTransform)

    • Transform Full Cubic Logarithmic

      \(z = a + b*ln{(m*x+n)} + c*ln{(o*y+p)} + d*ln{(m*x+n)}^{2} +f*ln{(o*y+p)}^{2} + g*ln{(m*x+n)}^{3} +h*ln{(o*y+p)}^{3} + i*ln{(m*x+n)}*ln{(o*y+p)} +j*ln{(m*x+n)}^{2}*ln{(o*y+p)} +k*ln{(m*x+n)}*ln{(o*y+p)}^{2}\)

      [a, b, c, d, f, g, h, i, j, k, m, n, o, p]

  • Full Quadratic Logarithmic (FullQuadraticLogarithmic)

    • Full Quadratic Logarithmic

      \(z = a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}^{2} +f*ln{(y)}^{2} + g*ln{(x)}*ln{(y)}\)

      [a, b, c, d, f, g]

  • Transform Full Quadratic Logarithmic (FullQuadraticLogarithmicTransform)

    • Transform Full Quadratic Logarithmic

      \(z = a + b*ln{(h*x+i)} + c*ln{(j*y+k)} + d*ln{(h*x+i)}^{2} +f*ln{(j*y+k)}^{2} + g*ln{(h*x+i)}*ln{(j*y+k)}\)

      [a, b, c, d, f, g, h, i, j, k]

  • Linear Logarithmic (LinearLogarithmic)

    • Linear Logarithmic

      \(z = a + b*ln{(x)} + c*ln{(y)}\)

      [a, b, c]

  • Transform Linear Logarithmic (LinearLogarithmicTransform)

    • Transform Linear Logarithmic

      \(z = a + b*ln{(d*x+f)} + c*ln{(g*y+h)}\)

      [a, b, c, d, f, g, h]

  • Simplified Cubic Logarithmic (SimplifiedCubicLogarithmic)

    • Simplified Cubic Logarithmic

      \(z = a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}^{2} +f*ln{(y)}^{2} + g*ln{(x)}^{3} +h*ln{(y)}^{3}\)

      [a, b, c, d, f, g, h]

  • Transform Simplified Cubic Logarithmic (SimplifiedCubicLogarithmicTransform)

    • Transform Simplified Cubic Logarithmic

      \(z = a + b*ln{(i*x+j)} + c*ln{(k*y+m)} + d*ln{(i*x+j)}^{2} +f*ln{(k*y+m)}^{2} + g*ln{(i*x+j)}^{3} +h*ln{(k*y+m)}^{3}\)

      [a, b, c, d, f, g, h, i, j, k, m]

  • Simplified Quadratic Logarithmic (SimplifiedQuadraticLogarithmic)

    • Simplified Quadratic Logarithmic

      \(z = a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}^{2} +f*ln{(y)}^{2}\)

      [a, b, c, d, f]

  • Transform Simplified Quadratic Logarithmic (SimplifiedQuadraticLogarithmicTransform)

    • Transform Simplified Quadratic Logarithmic

      \(z = a + b*ln{(g*x+h)} + c*ln{(i*y+j)} + d*ln{(g*x+h)}^{2} +f*ln{(i*y+j)}^{2}\)

      [a, b, c, d, f, g, h, i, j]

Miscellaneous

  • Gary Cler’s Custom Equation Transform (GaryCler_Transform)

    • Gary Cler’s Custom Equation Transform

      \(z = a * {(dx + f)}^{b} * {(gy + h)}^{c}\)

      [a, b, c, d, f, g, h]

    • Gary Cler’s Custom Equation Transform With Offset

      \(z = a * {(dx + f)}^{b} * {(gy + h)}^{c} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Gaussian Curvature Of Paraboloid (GaussianCurvatureOfParaboloid)

    • Gaussian Curvature Of Paraboloid

      \(z = 4a^{2} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{2}\)

      [a]

    • Gaussian Curvature Of Paraboloid With Offset

      \(z = 4a^{2} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{2} +\text{Offset}\)

      [a, Offset]

  • Gaussian Curvature Of Paraboloid Scaled (GaussianCurvatureOfParaboloid_scaled)

    • Gaussian Curvature Of Paraboloid Scaled

      \(z = Scale * 4a^{2} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{2}\)

      [a, Scale]

    • Gaussian Curvature Of Paraboloid Scaled With Offset

      \(z = Scale * 4a^{2} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{2} +\text{Offset}\)

      [a, Scale, Offset]

  • Gaussian Curvature Of Richmond’s Minimal Surface (GaussianCurvatureOfRichmondsMinimalSurface)

    • Gaussian Curvature Of Richmond’s Minimal Surface

      \(z = -1.0 * a * {(x^{2} +y^{2})}^{3} / {(b + {(x^{2} +y^{2})}^{2})}^{4}\)

      [a, b]

    • Gaussian Curvature Of Richmond’s Minimal Surface With Offset

      \(z = -1.0 * a * {(x^{2} +y^{2})}^{3} / {(b + {(x^{2} +y^{2})}^{2})}^{4} + \text{Offset}\)

      [a, b, Offset]

  • Gaussian Curvature Of Whitney’s Umbrella A (GaussianCurvatureOfWhitneysUmbrellaA)

    • Gaussian Curvature Of Whitney’s Umbrella A

      \(z = -1.0 * a * y^{2} / {(x^{2} + a *{(y^{2} + y^{4})})}^{2}\)

      [a]

    • Gaussian Curvature Of Whitney’s Umbrella A With Offset

      \(z = -1.0 * a * y^{2} / {(x^{2} + a *{(y^{2} + y^{4})})}^{2} +\text{Offset}\)

      [a, Offset]

  • Gaussian Curvature Of Whitney’s Umbrella B (GaussianCurvatureOfWhitneysUmbrellaB)

    • Gaussian Curvature Of Whitney’s Umbrella B

      \(z = -1.0 * a * x^{2} / {(y^{2} + a *{(x^{2} + x^{4})})}^{2}\)

      [a]

    • Gaussian Curvature Of Whitney’s Umbrella B With Offset

      \(z = -1.0 * a * x^{2} / {(y^{2} + a *{(x^{2} + x^{4})})}^{2} +\text{Offset}\)

      [a, Offset]

  • Liping Zheng’s core loss coefficients (LipingZheng)

    • Liping Zheng’s core loss coefficients

      \(z = ax^{2}y + bx^{2}y^{2} +cx^{1.5}y^{1.5}\)

      [a, b, c]

    • Liping Zheng’s core loss coefficients With Offset

      \(z = ax^{2}y + bx^{2}y^{2} +cx^{1.5}y^{1.5} + \text{Offset}\)

      [a, b, c, Offset]

  • Mean Curvature Of Paraboloid (MeanCurvatureOfParaboloid)

    • Mean Curvature Of Paraboloid

      \(z = 2 * {(a + 2a^{3} * {(x^{2} +y^{2})})} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{1.5}\)

      [a]

    • Mean Curvature Of Paraboloid With Offset

      \(z = 2 * {(a + 2a^{3} * {(x^{2} +y^{2})})} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{1.5} +\text{Offset}\)

      [a, Offset]

  • Mean Curvature Of Paraboloid Scaled (MeanCurvatureOfParaboloid_scaled)

    • Mean Curvature Of Paraboloid Scaled

      \(z = Scale * {(a + 2a^{3} * {(x^{2} +y^{2})})} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{1.5}\)

      [a, Scale]

    • Mean Curvature Of Paraboloid Scaled With Offset

      \(z = Scale * {(a + 2a^{3} * {(x^{2} +y^{2})})} / {(1 + 4a^{2} *{(x^{2} + y^{2})})}^{1.5} +\text{Offset}\)

      [a, Scale, Offset]

  • Mean Curvature Of Whitney’s Umbrella A (MeanCurvatureOfWhitneysUmbrellaA)

    • Mean Curvature Of Whitney’s Umbrella A

      \(z = -1.0 * x * {(a + b * y^{2})} / {(x^{2} +a * {(y^{2} + y^{4})})}^{1.5}\)

      [a, b]

    • Mean Curvature Of Whitney’s Umbrella A With Offset

      \(z = -1.0 * x * {(a + b * y^{2})} / {(x^{2} +a * {(y^{2} + y^{4})})}^{1.5}+ \text{Offset}\)

      [a, b, Offset]

  • Mean Curvature Of Whitney’s Umbrella B (MeanCurvatureOfWhitneysUmbrellaB)

    • Mean Curvature Of Whitney’s Umbrella B

      \(z = -1.0 * y * {(a + b * x^{2})} / {(y^{2} +a * {(x^{2} + x^{4})})}^{1.5}\)

      [a, b]

    • Mean Curvature Of Whitney’s Umbrella B With Offset

      \(z = -1.0 * y * {(a + b * x^{2})} / {(y^{2} +a * {(x^{2} + x^{4})})}^{1.5}+ \text{Offset}\)

      [a, b, Offset]

  • Menn’s Surface A (MennSurfaceA)

    • Menn’s Surface A

      \(z = ax^{4} + bx^{2}y -cy^{2}\)

      [a, b, c]

    • Menn’s Surface A With Offset

      \(z = ax^{4} + bx^{2}y -cy^{2} + \text{Offset}\)

      [a, b, c, Offset]

  • Menn’s Surface B (MennSurfaceB)

    • Menn’s Surface B

      \(z = ay^{4} + by^{2}x -cx^{2}\)

      [a, b, c]

    • Menn’s Surface B With Offset

      \(z = ay^{4} + by^{2}x -cx^{2} + \text{Offset}\)

      [a, b, c, Offset]

  • Monkey Saddle A (MonkeySaddleA)

    • Monkey Saddle A

      \(z = ax^{3} - bxy^{2}\)

      [a, b]

    • Monkey Saddle A With Offset

      \(z = ax^{3} - bxy^{2} + \text{Offset}\)

      [a, b, Offset]

  • Monkey Saddle B (MonkeySaddleB)

    • Monkey Saddle B

      \(z = ay^{3} - byx^{2}\)

      [a, b]

    • Monkey Saddle B With Offset

      \(z = ay^{3} - byx^{2} + \text{Offset}\)

      [a, b, Offset]

  • Monkey Saddle Transform A (MonkeySaddle_TransformA)

    • Monkey Saddle Transform A

      \(z = a{(cx + d)}^{3} - b{(cx + d)}{(fy + g)}^{2}\)

      [a, b, c, d, f, g]

    • Monkey Saddle Transform A With Offset

      \(z = a{(cx + d)}^{3} - b{(cx + d)}{(fy + g)}^{2}+ \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Monkey Saddle Transform B (MonkeySaddle_TransformB)

    • Monkey Saddle Transform B

      \(z = a{(cy + d)}^{3} - b{(cy + d)}{(fx + g)}^{2}\)

      [a, b, c, d, f, g]

    • Monkey Saddle Transform B With Offset

      \(z = a{(cy + d)}^{3} - b{(cy + d)}{(fx + g)}^{2}+ \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Paraboloid (Paraboloid)

    • Paraboloid

      \(z = a * {(x^{2} + y^{2})}\)

      [a]

    • Paraboloid With Offset

      \(z = a * {(x^{2} + y^{2})} + \text{Offset}\)

      [a, Offset]

  • Paraboloid Transform (Paraboloid_Transform)

    • Paraboloid Transform

      \(z = a * {({(bx + c)}^{2} + {(dy + f)}^{2})}\)

      [a, b, c, d, f]

    • Paraboloid Transform With Offset

      \(z = a * {({(bx + c)}^{2} + {(dy + f)}^{2})} +\text{Offset}\)

      [a, b, c, d, f, Offset]

  • Paschen’s Law for Breakdown Field Strength (PaschensBreakdownFieldStrengthLaw)

    • Paschen’s Law for Breakdown Field Strength

      \(Ebreakdown = pressure * {(a / {(ln{(pressure * distance)} + b)})}\)

      [a, b]

    • Paschen’s Law for Breakdown Field Strength With Offset

      \(Ebreakdown = pressure * {(a / {(ln{(pressure * distance)} + b)})} + \text{Offset}\)

      [a, b, Offset]

  • Paschen’s Law for Breakdown Voltage (PaschensBreakdownVoltageLaw)

    • Paschen’s Law for Breakdown Voltage

      \(Vbreakdown = a{(pressure * distance)} / {(ln{(pressure * distance)} + b)}\)

      [a, b]

    • Paschen’s Law for Breakdown Voltage With Offset

      \(Vbreakdown = a{(pressure * distance)} / {(ln{(pressure * distance)} + b)} +\text{Offset}\)

      [a, b, Offset]

  • Rex Kelfkens’ Custom Equation (RexKelfkens)

    • Rex Kelfkens’ Custom Equation

      \(z = \exp{(A+B*ln{(x)}+C*ln{(y)})}\)

      [A, B, C]

    • Rex Kelfkens’ Custom Equation With Offset

      \(z = \exp{(A+B*ln{(x)}+C*ln{(y)})} + \text{Offset}\)

      [A, B, C, Offset]

  • Rex Kelfkens’ Custom Equation Transform (RexKelfkensTransform)

    • Rex Kelfkens’ Custom Equation Transform

      \(z = \exp{(A+B*ln{(x * xscale + xoffset)}+C*ln{(y * yscale + yoffset)})}\)

      [A, B, C, xscale, xoffset, yscale, yoffset]

    • Rex Kelfkens’ Custom Equation Transform With Offset

      \(z = \exp{(A+B*ln{(x * xscale + xoffset)}+C*ln{(y * yscale + yoffset)})} +\text{Offset}\)

      [A, B, C, xscale, xoffset, yscale, yoffset, Offset]

NIST

  • NIST Nelson (NIST_Nelson)

    • NIST Nelson

      \(log{(y)} = b1 - b2 * X1 * \exp{(-b3*X2)}\)

      [b1, b2, b3]

  • NIST Nelson Autolog (NIST_NelsonAutolog)

    • NIST Nelson Autolog

      \(z = \exp{(b1 - b2 * x * \exp{(-b3*y)})}\)

      [b1, b2, b3]

    • NIST Nelson Autolog With Offset

      \(z = \exp{(b1 - b2 * x * \exp{(-b3*y)})} + \text{Offset}\)

      [b1, b2, b3, Offset]

Optical

  • Sag For Asphere 0 (SagForAsphere0)

    • Sag For Asphere 0

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})}\)

      [k, r]

    • Sag For Asphere 0 With Offset

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} + \text{Offset}\)

      [k, r, Offset]

  • Sag For Asphere 0 Borisovsky (SagForAsphere0_Borisovsky)

    • Sag For Asphere 0 Borisovsky

      \(s^{2} = {(x - a)}^{2} + {(y -b)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} + offset\)

      [a, b, k, r, offset]

    • Sag For Asphere 0 Borisovsky With Offset

      \(s^{2} = {(x - a)}^{2} + {(y -b)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} + offset +\text{Offset}\)

      [a, b, k, r, offset, Offset]

  • Transform Sag For Asphere 0 (SagForAsphere0_Transform)

    • Transform Sag For Asphere 0

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})}\)

      [k, r, a, b, c, d]

    • Transform Sag For Asphere 0 With Offset

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} + \text{Offset}\)

      [k, r, a, b, c, d, Offset]

  • Sag For Asphere 0 Scaled (SagForAsphere0_scaled)

    • Sag For Asphere 0 Scaled

      \(s^{2} = x^{2} + y^{2}\\z = Scale * {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})}\)

      [k, r, Scale]

    • Sag For Asphere 0 Scaled With Offset

      \(s^{2} = x^{2} + y^{2}\\z = Scale * {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} + \text{Offset}\)

      [k, r, Scale, Offset]

  • Sag For Asphere 1 (SagForAsphere1)

    • Sag For Asphere 1

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4}\)

      [k, r, A4]

    • Sag For Asphere 1 With Offset

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + \text{Offset}\)

      [k, r, A4, Offset]

  • Transform Sag For Asphere 1 (SagForAsphere1_Transform)

    • Transform Sag For Asphere 1

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4}\)

      [k, r, A4, a, b, c, d]

    • Transform Sag For Asphere 1 With Offset

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + \text{Offset}\)

      [k, r, A4, a, b, c, d, Offset]

  • Sag For Asphere 2 (SagForAsphere2)

    • Sag For Asphere 2

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6}\)

      [k, r, A4, A6]

    • Sag For Asphere 2 With Offset

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6} + \text{Offset}\)

      [k, r, A4, A6, Offset]

  • Transform Sag For Asphere 2 (SagForAsphere2_Transform)

    • Transform Sag For Asphere 2

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6}\)

      [k, r, A4, A6, a, b, c, d]

    • Transform Sag For Asphere 2 With Offset

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6} + \text{Offset}\)

      [k, r, A4, A6, a, b, c, d, Offset]

  • Sag For Asphere 3 (SagForAsphere3)

    • Sag For Asphere 3

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6} +A8*s^{8}\)

      [k, r, A4, A6, A8]

    • Sag For Asphere 3 With Offset

      \(s^{2} = x^{2} + y^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6} +A8*s^{8} + \text{Offset}\)

      [k, r, A4, A6, A8, Offset]

  • Transform Sag For Asphere 3 (SagForAsphere3_Transform)

    • Transform Sag For Asphere 3

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6} +A8*s^{8}\)

      [k, r, A4, A6, A8, a, b, c, d]

    • Transform Sag For Asphere 3 With Offset

      \(s^{2} = {(ax+b)}^{2} +{(cy+d)}^{2}\\z = {(s^{2}/r)} /{(1+{(1-{(k+1)}{(s/r)}^{2})}^{1/2})} +A4*s^{4} + A6*s^{6} +A8*s^{8} + \text{Offset}\)

      [k, r, A4, A6, A8, a, b, c, d, Offset]

Peak

  • Extreme Value A (ExtremeValueA)

    • Extreme Value A

      \(z = a * \exp{(-\exp{(-{(x-b)}/c)}-{(x-b)}/c+1)} + d *\exp{(-\exp{(-{(y-f)}/g)}-{(y-f)}/g+1)}\)

      [a, b, c, d, f, g]

    • Extreme Value A With Offset

      \(z = a * \exp{(-\exp{(-{(x-b)}/c)}-{(x-b)}/c+1)} + d *\exp{(-\exp{(-{(y-f)}/g)}-{(y-f)}/g+1)} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Extreme Value B (ExtremeValueB)

    • Extreme Value B

      \(z = a * \exp{(-\exp{(-{(x-b)}/c)}-{(x-b)}/c+1)} * \exp{(-\exp{(-{(y-d)}/f)}-{(y-d)}/f+1)}\)

      [a, b, c, d, f]

    • Extreme Value B With Offset

      \(z = a * \exp{(-\exp{(-{(x-b)}/c)}-{(x-b)}/c+1)} * \exp{(-\exp{(-{(y-d)}/f)}-{(y-d)}/f+1)} +\text{Offset}\)

      [a, b, c, d, f, Offset]

  • Gaussian A (GaussianA)

    • Gaussian A

      \(z = a * \exp{(-0.5 * {({({(x-b)}/c)}^{2} +{({(y-d)}/f)}^{2})})}\)

      [a, b, c, d, f]

    • Gaussian A With Offset

      \(z = a * \exp{(-0.5 * {({({(x-b)}/c)}^{2} +{({(y-d)}/f)}^{2})})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Gaussian B (GaussianB)

    • Gaussian B

      \(z = a * \exp{(-0.5 * {({({(x-b)}/c)}^{2})})} + d * \exp{(-0.5 *{({({(y-f)}/g)}^{2})})}\)

      [a, b, c, d, f, g]

    • Gaussian B With Offset

      \(z = a * \exp{(-0.5 * {({({(x-b)}/c)}^{2})})} + d * \exp{(-0.5 *{({({(y-f)}/g)}^{2})})} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Log-Normal A (LogNormalA)

    • Log-Normal A

      \(z = a * \exp{(-0.5 * {({({(ln{(x)}-b)}/c)}^{2} +{({(ln{(y)}-d)}/f)}^{2})})}\)

      [a, b, c, d, f]

    • Log-Normal A With Offset

      \(z = a * \exp{(-0.5 * {({({(ln{(x)}-b)}/c)}^{2} +{({(ln{(y)}-d)}/f)}^{2})})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Log-Normal B (LogNormalB)

    • Log-Normal B

      \(z = a * \exp{(-0.5 * {({({(ln{(x)}-b)}/c)}^{2})})} + d * \exp{(-0.5 *{({({(ln{(y)}-f)}/g)}^{2})})}\)

      [a, b, c, d, f, g]

    • Log-Normal B With Offset

      \(z = a * \exp{(-0.5 * {({({(ln{(x)}-b)}/c)}^{2})})} + d * \exp{(-0.5 *{({({(ln{(y)}-f)}/g)}^{2})})} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Logistic A (LogisticA)

    • Logistic A

      \(z = 4a * \exp{(-{({(x-b)}/c)})}/{({(1+\exp{(-{({(x-b)}/c)})})}^{2})} + 4d *\exp{(-{({(y-f)}/g)})}/{({(1+\exp{(-{({(y-f)}/g)})})}^{2})}\)

      [a, b, c, d, f, g]

    • Logistic A With Offset

      \(z = 4a * \exp{(-{({(x-b)}/c)})}/{({(1+\exp{(-{({(x-b)}/c)})})}^{2})} + 4d *\exp{(-{({(y-f)}/g)})}/{({(1+\exp{(-{({(y-f)}/g)})})}^{2})} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

  • Logistic B (LogisticB)

    • Logistic B

      \(z = 16a * \exp{(-{({(x-b)}/c)}-{({(y-d)}/f)})} /{({(1+\exp{(-{({(x-b)}/c)})})}^{2} *{(1+\exp{(-{({(y-d)}/f)})})}^{2})}\)

      [a, b, c, d, f]

    • Logistic B With Offset

      \(z = 16a * \exp{(-{({(x-b)}/c)}-{({(y-d)}/f)})} /{({(1+\exp{(-{({(x-b)}/c)})})}^{2} *{(1+\exp{(-{({(y-d)}/f)})})}^{2})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Lorentzian A (LorentzianA)

    • Lorentzian A

      \(z = a /{({(1+{({(x-b)}/c)}^{2})}*{(1+{({(y-d)}/f)}^{2})})}\)

      [a, b, c, d, f]

    • Lorentzian A With Offset

      \(z = a /{({(1+{({(x-b)}/c)}^{2})}*{(1+{({(y-d)}/f)}^{2})})} +\text{Offset}\)

      [a, b, c, d, f, Offset]

  • Lorentzian B (LorentzianB)

    • Lorentzian B

      \(z = a / {(1+{({(x-b)}/c)}^{2})} + d *{(1+{({(y-f)}/g)}^{2})}\)

      [a, b, c, d, f, g]

    • Lorentzian B With Offset

      \(z = a / {(1+{({(x-b)}/c)}^{2})} + d *{(1+{({(y-f)}/g)}^{2})} + \text{Offset}\)

      [a, b, c, d, f, g, Offset]

Polyfunctional

  • User-Selectable Polyfunctional (UserSelectablePolyfunctional)

    • User-Selectable Polyfunctional

      \(z = user-selectable function\)

      []

Polynomial

  • Full Cubic (FullCubic)

    • Full Cubic

      \(z = a + bx + cy + dx^{2} + fy^{2} +gx^{3} + hy^{3} + ixy +jx^{2}y + kxy^{2}\)

      [a, b, c, d, f, g, h, i, j, k]

  • Full Quadratic (FullQuadratic)

    • Full Quadratic

      \(z = a + bx + cy + dx^{2} + fy^{2} + gxy\)

      [a, b, c, d, f, g]

  • Linear (Linear)

    • Linear

      \(z = a + bx + cy\)

      [a, b, c]

  • Simplified Cubic (SimplifiedCubic)

    • Simplified Cubic

      \(z = a + bx + cy + dx^{2} + fy^{2} +gx^{3} + hy^{3}\)

      [a, b, c, d, f, g, h]

  • Simplified Quadratic (SimplifiedQuadratic)

    • Simplified Quadratic

      \(z = a + bx + cy + dx^{2} + fy^{2}\)

      [a, b, c, d, f]

  • User-Selectable Polynomial (UserSelectablePolynomial)

    • User-Selectable Polynomial

      \(z = user-selectable polynomial\)

Power

  • Power A (PowerA)

    • Power A

      \(z = a * {(x^{b} + y^{c})}\)

      [a, b, c]

    • Power A With Offset

      \(z = a * {(x^{b} + y^{c})} + \text{Offset}\)

      [a, b, c, Offset]

  • Transform Power A (PowerA_Transform)

    • Transform Power A

      \(z = a * {({(dx + f)}^{b} + {(gy + h)}^{c})}\)

      [a, b, c, d, f, g, h]

    • Transform Power A With Offset

      \(z = a * {({(dx + f)}^{b} + {(gy + h)}^{c})} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Power B (PowerB)

    • Power B

      \(z = a + x^{b} + y^{c}\)

      [a, b, c]

  • Transform Power B (PowerB_Transform)

    • Transform Power B

      \(z = a + {(dx + f)}^{b} + {(gy + h)}^{c}\)

      [a, b, c, d, f, g, h]

  • Power C (PowerC)

    • Power C

      \(z = a + x^{b} * y^{c}\)

      [a, b, c]

  • Transform Power C (PowerC_Transform)

    • Transform Power C

      \(z = a + {(dx + f)}^{b} * {(gy + h)}^{c}\)

      [a, b, c, d, f, g, h]

  • Power D (PowerD)

    • Power D

      \(z = ax^{b} + cy^{d}\)

      [a, b, c, d]

    • Power D With Offset

      \(z = ax^{b} + cy^{d} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Transform Power D (PowerD_Transform)

    • Transform Power D

      \(z = a{(fx + g)}^{b} + c{(hy + i)}^{d}\)

      [a, b, c, d, f, g, h, i]

    • Transform Power D With Offset

      \(z = a{(fx + g)}^{b} + c{(hy + i)}^{d} + \text{Offset}\)

      [a, b, c, d, f, g, h, i, Offset]

  • Power E (PowerE)

    • Power E

      \(z = a * x^{b} * y^{c}\)

      [a, b, c]

    • Power E With Offset

      \(z = a * x^{b} * y^{c} + \text{Offset}\)

      [a, b, c, Offset]

  • Transform Power E (PowerE_Transform)

    • Transform Power E

      \(z = a * {(dx + f)}^{b} * {(gy + h)}^{c}\)

      [a, b, c, d, f, g, h]

    • Transform Power E With Offset

      \(z = a * {(dx + f)}^{b} * {(gy + h)}^{c} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

Rational

  • Rational A (RationalA)

    • Rational A

      \(z = {(a + bx + cy)}/{(1 + dx + fy)}\)

      [a, b, c, d, f]

    • Rational A With Offset

      \(z = {(a + bx + cy)}/{(1 + dx + fy)} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational B (RationalB)

    • Rational B

      \(z = {(a + b*ln{(x)} + c*ln{(y)})}/{(1 + dx + fy)}\)

      [a, b, c, d, f]

    • Rational B With Offset

      \(z = {(a + b*ln{(x)} + c*ln{(y)})}/{(1 + dx + fy)} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational C (RationalC)

    • Rational C

      \(z = {(a + b*\exp{(x)} + c*ln{(y)})}/{(1 + dx + fy)}\)

      [a, b, c, d, f]

    • Rational C With Offset

      \(z = {(a + b*\exp{(x)} + c*ln{(y)})}/{(1 + dx + fy)} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational D (RationalD)

    • Rational D

      \(z = {(a + b*ln{(x)} + c*\exp{(y)})}/{(1 + dx + fy)}\)

      [a, b, c, d, f]

    • Rational D With Offset

      \(z = {(a + b*ln{(x)} + c*\exp{(y)})}/{(1 + dx + fy)} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational E (RationalE)

    • Rational E

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)})}/{(1 + dx + fy)}\)

      [a, b, c, d, f]

    • Rational E With Offset

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)})}/{(1 + dx + fy)} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational F (RationalF)

    • Rational F

      \(z = {(a + bx + cy)}/{(1 + d*ln{(x)} + f*ln{(y)})}\)

      [a, b, c, d, f]

    • Rational F With Offset

      \(z = {(a + bx + cy)}/{(1 + d*ln{(x)} + f*ln{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational G (RationalG)

    • Rational G

      \(z = {(a + bx + cy)}/{(1 + d*\exp{(x)} + f*ln{(y)})}\)

      [a, b, c, d, f]

    • Rational G With Offset

      \(z = {(a + bx + cy)}/{(1 + d*\exp{(x)} + f*ln{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational H (RationalH)

    • Rational H

      \(z = {(a + bx + cy)}/{(1 + d*ln{(x)} + f*\exp{(y)})}\)

      [a, b, c, d, f]

    • Rational H With Offset

      \(z = {(a + bx + cy)}/{(1 + d*ln{(x)} + f*\exp{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational I (RationalI)

    • Rational I

      \(z = {(a + bx + cy)}/{(1 + d*\exp{(x)} + f*\exp{(y)})}\)

      [a, b, c, d, f]

    • Rational I With Offset

      \(z = {(a + bx + cy)}/{(1 + d*\exp{(x)} + f*\exp{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational J (RationalJ)

    • Rational J

      \(z = {(a + b*ln{(x)} + c*ln{(y)})}/{(1 + d*ln{(x)} + f*ln{(y)})}\)

      [a, b, c, d, f]

    • Rational J With Offset

      \(z = {(a + b*ln{(x)} + c*ln{(y)})}/{(1 + d*ln{(x)} + f*ln{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational K (RationalK)

    • Rational K

      \(z = {(a + b*\exp{(x)} + c*ln{(y)})}/{(1 + d*\exp{(x)} + f*ln{(y)})}\)

      [a, b, c, d, f]

    • Rational K With Offset

      \(z = {(a + b*\exp{(x)} + c*ln{(y)})}/{(1 + d*\exp{(x)} + f*ln{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational L (RationalL)

    • Rational L

      \(z = {(a + b*ln{(x)} + c*\exp{(y)})}/{(1 + d*ln{(x)} + f*\exp{(y)})}\)

      [a, b, c, d, f]

    • Rational L With Offset

      \(z = {(a + b*ln{(x)} + c*\exp{(y)})}/{(1 + d*ln{(x)} + f*\exp{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational M (RationalM)

    • Rational M

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)})}/{(1 + d*\exp{(x)} + f*\exp{(y)})}\)

      [a, b, c, d, f]

    • Rational M With Offset

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)})}/{(1 + d*\exp{(x)} + f*\exp{(y)})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

  • Rational N (RationalN)

    • Rational N

      \(z = {(a + bx + cy + dxy)}/{(1 + fx + gy + hxy)}\)

      [a, b, c, d, f, g, h]

    • Rational N With Offset

      \(z = {(a + bx + cy + dxy)}/{(1 + fx + gy + hxy)} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational O (RationalO)

    • Rational O

      \(z = {(a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}ln{(y)})}/{(1 + fx + gy + hxy)}\)

      [a, b, c, d, f, g, h]

    • Rational O With Offset

      \(z = {(a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}ln{(y)})}/{(1 + fx + gy + hxy)} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational P (RationalP)

    • Rational P

      \(z = {(a + b*\exp{(x)} + c*ln{(y)} + d*\exp{(x)}ln{(y)})}/{(1 + fx + gy + hxy)}\)

      [a, b, c, d, f, g, h]

    • Rational P With Offset

      \(z = {(a + b*\exp{(x)} + c*ln{(y)} + d*\exp{(x)}ln{(y)})}/{(1 + fx + gy + hxy)} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational Q (RationalQ)

    • Rational Q

      \(z = {(a + b*ln{(x)} + c*\exp{(y)} + d*ln{(x)}\exp{(y)})}/{(1 + fx + gy + hxy)}\)

      [a, b, c, d, f, g, h]

    • Rational Q With Offset

      \(z = {(a + b*ln{(x)} + c*\exp{(y)} + d*ln{(x)}\exp{(y)})}/{(1 + fx + gy + hxy)} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational R (RationalR)

    • Rational R

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}\exp{(y)})}/{(1 + fx + gy + hxy)}\)

      [a, b, c, d, f, g, h]

    • Rational R With Offset

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}\exp{(y)})}/{(1 + fx + gy + hxy)} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational S (RationalS)

    • Rational S

      \(z = {(a + bx + cy + dxy)}/{(1 + f*ln{(x)} + g*ln{(y)} + h*ln{(x)}*ln{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational S With Offset

      \(z = {(a + bx + cy + dxy)}/{(1 + f*ln{(x)} + g*ln{(y)} + h*ln{(x)}*ln{(y)})} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational T (RationalT)

    • Rational T

      \(z = {(a + bx + cy + dxy)}/{(1 + f*\exp{(x)} + g*ln{(y)} + h*\exp{(x)}*ln{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational T With Offset

      \(z = {(a + bx + cy + dxy)}/{(1 + f*\exp{(x)} + g*ln{(y)} + h*\exp{(x)}*ln{(y)})} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational U (RationalU)

    • Rational U

      \(z = {(a + bx + cy + dxy)}/{(1 + f*ln{(x)} + g*\exp{(y)} + h*ln{(x)}*\exp{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational U With Offset

      \(z = {(a + bx + cy + dxy)}/{(1 + f*ln{(x)} + g*\exp{(y)} + h*ln{(x)}*\exp{(y)})} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational V (RationalV)

    • Rational V

      \(z = {(a + bx + cy + dxy)}/{(1 + f*\exp{(x)} + g*\exp{(y)} + h*\exp{(x)}*\exp{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational V With Offset

      \(z = {(a + bx + cy + dxy)}/{(1 + f*\exp{(x)} + g*\exp{(y)} + h*\exp{(x)}*\exp{(y)})} +\text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational W (RationalW)

    • Rational W

      \(z = {(a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}*ln{(y)})}/{(1 + f*ln{(x)} + g*ln{(y)} +h*ln{(x)}*ln{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational W With Offset

      \(z = {(a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}*ln{(y)})}/{(1 + f*ln{(x)} + g*ln{(y)} +h*ln{(x)}*ln{(y)})} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational X (RationalX)

    • Rational X

      \(z = {(a + b*\exp{(x)} + c*ln{(y)} + d*\exp{(x)}*ln{(y)})}/{(1 + f*\exp{(x)} + g*ln{(y)} +h*\exp{(x)}*ln{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational X With Offset

      \(z = {(a + b*\exp{(x)} + c*ln{(y)} + d*\exp{(x)}*ln{(y)})}/{(1 + f*\exp{(x)} + g*ln{(y)} +h*\exp{(x)}*ln{(y)})} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational Y (RationalY)

    • Rational Y

      \(z = {(a + b*ln{(x)} + c*\exp{(y)} + d*ln{(x)}*\exp{(y)})}/{(1 + f*ln{(x)} + g*\exp{(y)} +h*ln{(x)}*\exp{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational Y With Offset

      \(z = {(a + b*ln{(x)} + c*\exp{(y)} + d*ln{(x)}*\exp{(y)})}/{(1 + f*ln{(x)} + g*\exp{(y)} +h*ln{(x)}*\exp{(y)})} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

  • Rational Z (RationalZ)

    • Rational Z

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}*\exp{(y)})}/{(1 + f*\exp{(x)} + g*\exp{(y)}+ h*\exp{(x)}*\exp{(y)})}\)

      [a, b, c, d, f, g, h]

    • Rational Z With Offset

      \(z = {(a + b*\exp{(x)} + c*\exp{(y)} + d*\exp{(x)}*\exp{(y)})}/{(1 + f*\exp{(x)} + g*\exp{(y)}+ h*\exp{(x)}*\exp{(y)})} + \text{Offset}\)

      [a, b, c, d, f, g, h, Offset]

RomanSurfaces

  • Roman Surface (minus) (RomanSurfaceMinus)

    • Roman Surface (minus)

      \(z = {(k{(y^{2}-x^{2})} -{(x^{2}-y^{2})}\sqrt{(k^{2}-x^{2}-y^{2})})}/ {(2{(x^{2}+y^{2})})}\)

      [k]

    • Roman Surface (minus) With Offset

      \(z = {(k{(y^{2}-x^{2})} -{(x^{2}-y^{2})}\sqrt{(k^{2}-x^{2}-y^{2})})}/ {(2{(x^{2}+y^{2})})} + \text{Offset}\)

      [k, Offset]

  • Roman Surface (minus) Offset XY (RomanSurfaceMinus_OffsetXY)

    • Roman Surface (minus) Offset XY

      \(z = {(k{({(y+b)}^{2}-{(x+a)}^{2})} -{({(x+a)}^{2}-{(y+b)}^{2})}\sqrt{(k^{2}-{(x+a)}^{2}-{(y+b)}^{2})})}/ {(2{({(x+a)}^{2}+{(y+b)}^{2})})}\)

      [k, a, b]

    • Roman Surface (minus) Offset XY With Offset

      \(z = {(k{({(y+b)}^{2}-{(x+a)}^{2})} -{({(x+a)}^{2}-{(y+b)}^{2})}\sqrt{(k^{2}-{(x+a)}^{2}-{(y+b)}^{2})})}/ {(2{({(x+a)}^{2}+{(y+b)}^{2})})} + \text{Offset}\)

      [k, a, b, Offset]

  • Roman Surface (minus) Scaled And Offset XY (RomanSurfaceMinus_ScaledAndOffsetXY)

    • Roman Surface (minus) Scaled And Offset XY

      \(z = {(k{({(cy+d)}^{2}-{(ax+b)}^{2})} -{({(ax+b)}^{2}-{(cy+d)}^{2})}\sqrt{(k^{2}-{(ax+b)}^{2}-{(cy+d)}^{2})})}/ {(2{({(ax+b)}^{2}+{(cy+d)}^{2})})}\)

      [k, a, b, c, d]

    • Roman Surface (minus) Scaled And Offset XY With Offset

      \(z = {(k{({(cy+d)}^{2}-{(ax+b)}^{2})} -{({(ax+b)}^{2}-{(cy+d)}^{2})}\sqrt{(k^{2}-{(ax+b)}^{2}-{(cy+d)}^{2})})}/ {(2{({(ax+b)}^{2}+{(cy+d)}^{2})})} + \text{Offset}\)

      [k, a, b, c, d, Offset]

  • Roman Surface (plus) (RomanSurfacePlus)

    • Roman Surface (plus)

      \(z = {(k{(y^{2}-x^{2})} +{(x^{2}-y^{2})}\sqrt{(k^{2}-x^{2}-y^{2})})}/ {(2{(x^{2}+y^{2})})}\)

      [k]

    • Roman Surface (plus) With Offset

      \(z = {(k{(y^{2}-x^{2})} +{(x^{2}-y^{2})}\sqrt{(k^{2}-x^{2}-y^{2})})}/ {(2{(x^{2}+y^{2})})} + \text{Offset}\)

      [k, Offset]

  • Roman Surface (plus) Offset XY (RomanSurfacePlus_OffsetXY)

    • Roman Surface (plus) Offset XY

      \(z = {(k{({(y+b)}^{2}-{(x+a)}^{2})} +{({(x+a)}^{2}-{(y+b)}^{2})}\sqrt{(k^{2}-{(x+a)}^{2}-{(y+b)}^{2})})}/ {(2{({(x+a)}^{2}+{(y+b)}^{2})})}\)

      [k, a, b]

    • Roman Surface (plus) Offset XY With Offset

      \(z = {(k{({(y+b)}^{2}-{(x+a)}^{2})} +{({(x+a)}^{2}-{(y+b)}^{2})}\sqrt{(k^{2}-{(x+a)}^{2}-{(y+b)}^{2})})}/ {(2{({(x+a)}^{2}+{(y+b)}^{2})})} + \text{Offset}\)

      [k, a, b, Offset]

  • Roman Surface (plus) Scaled And Offset XY (RomanSurfacePlus_ScaledAndOffsetXY)

    • Roman Surface (plus) Scaled And Offset XY

      \(z = {(k{({(cy+d)}^{2}-{(ax+b)}^{2})} +{({(ax+b)}^{2}-{(cy+d)}^{2})}\sqrt{(k^{2}-{(ax+b)}^{2}-{(cy+d)}^{2})})}/ {(2{({(ax+b)}^{2}+{(cy+d)}^{2})})}\)

      [k, a, b, c, d]

    • Roman Surface (plus) Scaled And Offset XY With Offset

      \(z = {(k{({(cy+d)}^{2}-{(ax+b)}^{2})} +{({(ax+b)}^{2}-{(cy+d)}^{2})}\sqrt{(k^{2}-{(ax+b)}^{2}-{(cy+d)}^{2})})}/ {(2{({(ax+b)}^{2}+{(cy+d)}^{2})})} + \text{Offset}\)

      [k, a, b, c, d, Offset]

  • Roman Surface (plus) Scaled (RomanSurfacePlus_scaled)

    • Roman Surface (plus) Scaled

      \(z = Scale * {(k{(y^{2}-x^{2})} +{(x^{2}-y^{2})}\sqrt{(k^{2}-x^{2}-y^{2})})}/ {(2{(x^{2}+y^{2})})}\)

      [k, Scale]

    • Roman Surface (plus) Scaled With Offset

      \(z = Scale * {(k{(y^{2}-x^{2})} +{(x^{2}-y^{2})}\sqrt{(k^{2}-x^{2}-y^{2})})}/ {(2{(x^{2}+y^{2})})} + \text{Offset}\)

      [k, Scale, Offset]

Sigmoidal

  • Andrea Prunotto Sigmoid A (AndreaPrunottoSigmoidA)

    • Andrea Prunotto Sigmoid A

      \(z = a0 + {(a1 / {(1.0 + \exp{(a2 * {(x + a3 + a4 * y + a5 * x * y)})})})}\)

      [a0, a1, a2, a3, a4, a5]

  • Andrea Prunotto Sigmoid B (AndreaPrunottoSigmoidB)

    • Andrea Prunotto Sigmoid B

      \(z = a0 + {(a1 / {(1.0 + \exp{(a2 * {(x * a3 + a4 * y + a5 * x * y)})})})}\)

      [a0, a1, a2, a3, a4, a5]

  • Fraser Smith Sigmoid (FraserSmithSigmoid)

    • Fraser Smith Sigmoid

      \(z = 1.0 / {({(1.0 + \exp{(a - bx)})} * {(1.0 + \exp{(c - dy)})})}\)

      [a, b, c, d]

    • Fraser Smith Sigmoid With Offset

      \(z = 1.0 / {({(1.0 + \exp{(a - bx)})} * {(1.0 + \exp{(c - dy)})})} + \text{Offset}\)

      [a, b, c, d, Offset]

  • Fraser Smith Sigmoid Scaled (FraserSmithSigmoid_scaled)

    • Fraser Smith Sigmoid Scaled

      \(z = Scale / {({(1.0 + \exp{(a - bx)})} * {(1.0 + \exp{(c - dy)})})}\)

      [a, b, c, d, Scale]

    • Fraser Smith Sigmoid Scaled With Offset

      \(z = Scale / {({(1.0 + \exp{(a - bx)})} * {(1.0 + \exp{(c - dy)})})} + \text{Offset}\)

      [a, b, c, d, Scale, Offset]

  • Sigmoid (Sigmoid)

    • Sigmoid

      \(z = a / {({(1.0 + \exp{(b - cx)})} * {(1.0 + \exp{(d - fy)})})}\)

      [a, b, c, d, f]

    • Sigmoid With Offset

      \(z = a / {({(1.0 + \exp{(b - cx)})} * {(1.0 + \exp{(d - fy)})})} + \text{Offset}\)

      [a, b, c, d, f, Offset]

Simple

  • Simple Equation 01 (SimpleEquation_01)

    • Simple Equation 01

      \(z = a*pow{(x,b)}*pow{(y,c)}\)

      [a, b, c]

    • Simple Equation 01 With Offset

      \(z = a*pow{(x,b)}*pow{(y,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 02 (SimpleEquation_02)

    • Simple Equation 02

      \(z = x/{(a+b*y)}\)

      [a, b]

    • Simple Equation 02 With Offset

      \(z = x/{(a+b*y)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 03 (SimpleEquation_03)

    • Simple Equation 03

      \(z = y/{(a+b*x)}\)

      [a, b]

    • Simple Equation 03 With Offset

      \(z = y/{(a+b*x)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 04 (SimpleEquation_04)

    • Simple Equation 04

      \(z = a*pow{(x,b*y)}\)

      [a, b]

    • Simple Equation 04 With Offset

      \(z = a*pow{(x,b*y)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 05 (SimpleEquation_05)

    • Simple Equation 05

      \(z = a*pow{(y,b*x)}\)

      [a, b]

    • Simple Equation 05 With Offset

      \(z = a*pow{(y,b*x)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 06 (SimpleEquation_06)

    • Simple Equation 06

      \(z = a*pow{(x,b/y)}\)

      [a, b]

    • Simple Equation 06 With Offset

      \(z = a*pow{(x,b/y)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 07 (SimpleEquation_07)

    • Simple Equation 07

      \(z = a*pow{(y,b/x)}\)

      [a, b]

    • Simple Equation 07 With Offset

      \(z = a*pow{(y,b/x)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 08 (SimpleEquation_08)

    • Simple Equation 08

      \(z = a*x+b*pow{(y,2.0)}\)

      [a, b]

    • Simple Equation 08 With Offset

      \(z = a*x+b*pow{(y,2.0)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 09 (SimpleEquation_09)

    • Simple Equation 09

      \(z = a*y+b*pow{(x,2.0)}\)

      [a, b]

    • Simple Equation 09 With Offset

      \(z = a*y+b*pow{(x,2.0)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 10 (SimpleEquation_10)

    • Simple Equation 10

      \(z = x/{(a+b*pow{(y,2.0)})}\)

      [a, b]

    • Simple Equation 10 With Offset

      \(z = x/{(a+b*pow{(y,2.0)})} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 11 (SimpleEquation_11)

    • Simple Equation 11

      \(z = y/{(a+b*pow{(x,2.0)})}\)

      [a, b]

    • Simple Equation 11 With Offset

      \(z = y/{(a+b*pow{(x,2.0)})} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 12 (SimpleEquation_12)

    • Simple Equation 12

      \(z = a*pow{(b,x)}*pow{(y,c)}\)

      [a, b, c]

    • Simple Equation 12 With Offset

      \(z = a*pow{(b,x)}*pow{(y,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 13 (SimpleEquation_13)

    • Simple Equation 13

      \(z = a*pow{(b,y)}*pow{(x,c)}\)

      [a, b, c]

    • Simple Equation 13 With Offset

      \(z = a*pow{(b,y)}*pow{(x,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 14 (SimpleEquation_14)

    • Simple Equation 14

      \(z = a*pow{(x*y,b)}\)

      [a, b]

    • Simple Equation 14 With Offset

      \(z = a*pow{(x*y,b)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 15 (SimpleEquation_15)

    • Simple Equation 15

      \(z = a*pow{(x/y,b)}\)

      [a, b]

    • Simple Equation 15 With Offset

      \(z = a*pow{(x/y,b)} + \text{Offset}\)

      [a, b, Offset]

  • Simple Equation 16 (SimpleEquation_16)

    • Simple Equation 16

      \(z = a*{(pow{(b,1.0/x)})}*pow{(y,c)}\)

      [a, b, c]

    • Simple Equation 16 With Offset

      \(z = a*{(pow{(b,1.0/x)})}*pow{(y,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 17 (SimpleEquation_17)

    • Simple Equation 17

      \(z = a*pow{(b,1.0/y)}*pow{(x,c)}\)

      [a, b, c]

    • Simple Equation 17 With Offset

      \(z = a*pow{(b,1.0/y)}*pow{(x,c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 18 (SimpleEquation_18)

    • Simple Equation 18

      \(z = a*pow{(x/b,c)}*\exp{(y/b)}\)

      [a, b, c]

    • Simple Equation 18 With Offset

      \(z = a*pow{(x/b,c)}*\exp{(y/b)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 19 (SimpleEquation_19)

    • Simple Equation 19

      \(z = a*pow{(y/b,c)}*\exp{(x/b)}\)

      [a, b, c]

    • Simple Equation 19 With Offset

      \(z = a*pow{(y/b,c)}*\exp{(x/b)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 20 (SimpleEquation_20)

    • Simple Equation 20

      \(z = a*pow{(x,b+c*y)}\)

      [a, b, c]

    • Simple Equation 20 With Offset

      \(z = a*pow{(x,b+c*y)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 21 (SimpleEquation_21)

    • Simple Equation 21

      \(z = a*pow{(y,b+c*x)}\)

      [a, b, c]

    • Simple Equation 21 With Offset

      \(z = a*pow{(y,b+c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 22 (SimpleEquation_22)

    • Simple Equation 22

      \(z = a*pow{(x,b+c/y)}\)

      [a, b, c]

    • Simple Equation 22 With Offset

      \(z = a*pow{(x,b+c/y)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 23 (SimpleEquation_23)

    • Simple Equation 23

      \(z = a*pow{(y,b+c/x)}\)

      [a, b, c]

    • Simple Equation 23 With Offset

      \(z = a*pow{(y,b+c/x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 24 (SimpleEquation_24)

    • Simple Equation 24

      \(z = a*pow{(x,b+c*ln{(y)})}\)

      [a, b, c]

    • Simple Equation 24 With Offset

      \(z = a*pow{(x,b+c*ln{(y)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 25 (SimpleEquation_25)

    • Simple Equation 25

      \(z = a*pow{(y,b+c*ln{(x)})}\)

      [a, b, c]

    • Simple Equation 25 With Offset

      \(z = a*pow{(y,b+c*ln{(x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 26 (SimpleEquation_26)

    • Simple Equation 26

      \(z = a*pow{(y,b+c/ln{(x)})}\)

      [a, b, c]

    • Simple Equation 26 With Offset

      \(z = a*pow{(y,b+c/ln{(x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 27 (SimpleEquation_27)

    • Simple Equation 27

      \(z = a*pow{(x,b+c/ln{(y)})}\)

      [a, b, c]

    • Simple Equation 27 With Offset

      \(z = a*pow{(x,b+c/ln{(y)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 28 (SimpleEquation_28)

    • Simple Equation 28

      \(z = a*\exp{(b*x+c*pow{(y,2.0)})}\)

      [a, b, c]

    • Simple Equation 28 With Offset

      \(z = a*\exp{(b*x+c*pow{(y,2.0)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 29 (SimpleEquation_29)

    • Simple Equation 29

      \(z = a*\exp{(b*y+c*pow{(x,2.0)})}\)

      [a, b, c]

    • Simple Equation 29 With Offset

      \(z = a*\exp{(b*y+c*pow{(x,2.0)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 30 (SimpleEquation_30)

    • Simple Equation 30

      \(z = a*\exp{(b/x+c*y)}\)

      [a, b, c]

    • Simple Equation 30 With Offset

      \(z = a*\exp{(b/x+c*y)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 31 (SimpleEquation_31)

    • Simple Equation 31

      \(z = a*\exp{(b/y+c*x)}\)

      [a, b, c]

    • Simple Equation 31 With Offset

      \(z = a*\exp{(b/y+c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 32 (SimpleEquation_32)

    • Simple Equation 32

      \(z = {(a+x)}/{(b+c*y)}\)

      [a, b, c]

    • Simple Equation 32 With Offset

      \(z = {(a+x)}/{(b+c*y)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 33 (SimpleEquation_33)

    • Simple Equation 33

      \(z = {(a+y)}/{(b+c*x)}\)

      [a, b, c]

    • Simple Equation 33 With Offset

      \(z = {(a+y)}/{(b+c*x)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 34 (SimpleEquation_34)

    • Simple Equation 34

      \(z = {(a+x)}/{(b+c*pow{(y,2.0)})}\)

      [a, b, c]

    • Simple Equation 34 With Offset

      \(z = {(a+x)}/{(b+c*pow{(y,2.0)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 35 (SimpleEquation_35)

    • Simple Equation 35

      \(z = {(a+y)}/{(b+c*pow{(x,2.0)})}\)

      [a, b, c]

    • Simple Equation 35 With Offset

      \(z = {(a+y)}/{(b+c*pow{(x,2.0)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 36 (SimpleEquation_36)

    • Simple Equation 36

      \(z = a*{(\exp{(b*x)}-\exp{(c*y)})}\)

      [a, b, c]

    • Simple Equation 36 With Offset

      \(z = a*{(\exp{(b*x)}-\exp{(c*y)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 37 (SimpleEquation_37)

    • Simple Equation 37

      \(z = a*pow{(x,b*pow{(y,c)})}\)

      [a, b, c]

    • Simple Equation 37 With Offset

      \(z = a*pow{(x,b*pow{(y,c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 38 (SimpleEquation_38)

    • Simple Equation 38

      \(z = a*pow{(y,b*pow{(x,c)})}\)

      [a, b, c]

    • Simple Equation 38 With Offset

      \(z = a*pow{(y,b*pow{(x,c)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 39 (SimpleEquation_39)

    • Simple Equation 39

      \(z = x/{(a+b*y+c*pow{(y,0.5)})}\)

      [a, b, c]

    • Simple Equation 39 With Offset

      \(z = x/{(a+b*y+c*pow{(y,0.5)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 40 (SimpleEquation_40)

    • Simple Equation 40

      \(z = y/{(a+b*x+c*pow{(x,0.5)})}\)

      [a, b, c]

    • Simple Equation 40 With Offset

      \(z = y/{(a+b*x+c*pow{(x,0.5)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 41 (SimpleEquation_41)

    • Simple Equation 41

      \(z = \exp{(a+b/x+c*ln{(y)})}\)

      [a, b, c]

    • Simple Equation 41 With Offset

      \(z = \exp{(a+b/x+c*ln{(y)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 42 (SimpleEquation_42)

    • Simple Equation 42

      \(z = \exp{(a+b/y+c*ln{(x)})}\)

      [a, b, c]

    • Simple Equation 42 With Offset

      \(z = \exp{(a+b/y+c*ln{(x)})} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 43 (SimpleEquation_43)

    • Simple Equation 43

      \(z = a*pow{(x,b)}*ln{(y+c)}\)

      [a, b, c]

    • Simple Equation 43 With Offset

      \(z = a*pow{(x,b)}*ln{(y+c)} + \text{Offset}\)

      [a, b, c, Offset]

  • Simple Equation 44 (SimpleEquation_44)

    • Simple Equation 44

      \(z = a*pow{(y,b)}*ln{(x+c)}\)

      [a, b, c]

    • Simple Equation 44 With Offset

      \(z = a*pow{(y,b)}*ln{(x+c)} + \text{Offset}\)

      [a, b, c, Offset]

Spline

  • Spline (Spline)

    • Spline

      \(z = B-Spline Interpolation Surface\)

TaylorSeries

  • Taylor Series A (TaylorA)

    • Taylor Series A

      \(z = a + bx + cy + dx^{2} + fy^{2} + gxy\)

      [a, b, c, d, f, g]

  • Taylor Series B (TaylorB)

    • Taylor Series B

      \(z = a + b*ln{(x)} + cy + d*ln{(x)}^{2} +fy^{2} + g*ln{(x)}*y\)

      [a, b, c, d, f, g]

  • Taylor Series C (TaylorC)

    • Taylor Series C

      \(z = a + bx + c*ln{(y)} + dx^{2} +f*ln{(y)}^{2} + g*x*ln{(y)}\)

      [a, b, c, d, f, g]

  • Taylor Series D (TaylorD)

    • Taylor Series D

      \(z = a + b*ln{(x)} + c*ln{(y)} + d*ln{(x)}^{2} +f*ln{(y)}^{2} + g*ln{(x)}*ln{(y)}\)

      [a, b, c, d, f, g]

  • Taylor Series E (TaylorE)

    • Taylor Series E

      \(z = a + b/x + cy + d/x^{2} + fy^{2} + gy/x\)

      [a, b, c, d, f, g]

  • Taylor Series F (TaylorF)

    • Taylor Series F

      \(z = a + b/ln{(x)} + cy + d/ln{(x)}^{2} +fy^{2} + gy/ln{(x)}\)

      [a, b, c, d, f, g]

  • Taylor Series G (TaylorG)

    • Taylor Series G

      \(z = a + b/x + c*ln{(y)} + d/x^{2} +f*ln{(y)}^{2} + g*ln{(y)}/x\)

      [a, b, c, d, f, g]

  • Taylor Series H (TaylorH)

    • Taylor Series H

      \(z = a + b/ln{(x)} + c*ln{(y)} + d/ln{(x)}^{2} +f*ln{(y)}^{2} + g*ln{(y)}/ln{(x)}\)

      [a, b, c, d, f, g]

  • Taylor Series I (TaylorI)

    • Taylor Series I

      \(z = a + bx + c/y + dx^{2} + f/y^{2} + gx/y\)

      [a, b, c, d, f, g]

  • Taylor Series J (TaylorJ)

    • Taylor Series J

      \(z = a + b*ln{(x)} + c/y + d*ln{(x)}^{2} +f/y^{2} + g*ln{(x)}/y\)

      [a, b, c, d, f, g]

  • Taylor Series K (TaylorK)

    • Taylor Series K

      \(z = a + bx + c/ln{(y)} + dx^{2} +f/ln{(y)}^{2} + gx/ln{(y)}\)

      [a, b, c, d, f, g]

  • Taylor Series L (TaylorL)

    • Taylor Series L

      \(z = a + b*ln{(x)} + c/ln{(y)} + d*ln{(x)}^{2} +f/ln{(y)}^{2} + g*ln{(x)}/ln{(y)}\)

      [a, b, c, d, f, g]

  • Taylor Series M (TaylorM)

    • Taylor Series M

      \(z = a + b/x + c/y + d/x^{2} + f/y^{2} +g/{(xy)}\)

      [a, b, c, d, f, g]

  • Taylor Series N (TaylorN)

    • Taylor Series N

      \(z = a + b/ln{(x)} + c/y + d/ln{(x)}^{2} +f/y^{2} + g/{(ln{(x)}*y)}\)

      [a, b, c, d, f, g]

  • Taylor Series O (TaylorO)

    • Taylor Series O

      \(z = a + b/x + c/ln{(y)} + d/x^{2} +f/ln{(y)}^{2} + g/{(x*ln{(y)})}\)

      [a, b, c, d, f, g]

  • Taylor Series P (TaylorP)

    • Taylor Series P

      \(z = a + b/ln{(x)} + c/ln{(y)} + d/ln{(x)}^{2} +f/ln{(y)}^{2} + g/{(ln{(x)}*ln{(y)})}\)

      [a, b, c, d, f, g]

Trigonometric

  • Cosh XY [radians] (CoshXY)

    • Cosh XY [radians]

      \(z = amplitude * cosh{(pi * {(xy - center)} / width)}\)

      [amplitude, center, width]

    • Cosh XY [radians] With Offset

      \(z = amplitude * cosh{(pi * {(xy - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Cosh X Plus Cosh Y [radians] (CoshX_Plus_CoshY)

    • Cosh X Plus Cosh Y [radians]

      \(z = amplitude\_x * cosh{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y* cosh{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Cosh X Plus Cosh Y [radians] With Offset

      \(z = amplitude\_x * cosh{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y* cosh{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Cosh X Plus Sine Y [radians] (CoshX_Plus_SineY)

    • Cosh X Plus Sine Y [radians]

      \(z = amplitude\_x * cosh{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y* sin{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Cosh X Plus Sine Y [radians] With Offset

      \(z = amplitude\_x * cosh{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y* sin{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Cosh X Plus Tangent Y [radians] (CoshX_Plus_TangentY)

    • Cosh X Plus Tangent Y [radians]

      \(z = amplitude\_x * cosh{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y* tan{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Cosh X Plus Tangent Y [radians] With Offset

      \(z = amplitude\_x * cosh{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y* tan{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Cosh X Times Cosh Y[radians] (CoshX_Times_CoshY)

    • Cosh X Times Cosh Y[radians]

      \(z = amplitude * cosh{(pi * {(x - center\_x)} / width\_x)} * cosh{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Cosh X Times Cosh Y[radians] With Offset

      \(z = amplitude * cosh{(pi * {(x - center\_x)} / width\_x)} * cosh{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Cosh X Times Sine Y [radians] (CoshX_Times_SineY)

    • Cosh X Times Sine Y [radians]

      \(z = amplitude * cosh{(pi * {(x - center\_x)} / width\_x)} * sin{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Cosh X Times Sine Y [radians] With Offset

      \(z = amplitude * cosh{(pi * {(x - center\_x)} / width\_x)} * sin{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Cosh X Times Tangent Y [radians] (CoshX_Times_TangentY)

    • Cosh X Times Tangent Y [radians]

      \(z = amplitude * cosh{(pi * {(x - center\_x)} / width\_x)} * tan{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Cosh X Times Tangent Y [radians] With Offset

      \(z = amplitude * cosh{(pi * {(x - center\_x)} / width\_x)} * tan{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Reza’s Custom Equation One [radians] (RezaCustomOne)

    • Reza’s Custom Equation One [radians]

      \(z = {(cos{(a*x - b*y)} + sin{(c*x - d*y)})}^{n} - {(cos{(f*x -g*y)} + sin{(h*x- i*y)})}^{n}\)

      [a, b, c, d, f, g, h, i, n]

    • Reza’s Custom Equation One [radians] With Offset

      \(z = {(cos{(a*x - b*y)} + sin{(c*x - d*y)})}^{n} - {(cos{(f*x -g*y)} + sin{(h*x- i*y)})}^{n} + \text{Offset}\)

      [a, b, c, d, f, g, h, i, n, Offset]

  • Reza’s Custom Equation Two [radians] (RezaCustomTwo)

    • Reza’s Custom Equation Two [radians]

      \(z = abs{(cos{({(A*{(x+B)})} + C*{(y+D)})})} + abs{(cos{({(A*{(x+B)})} - C*{(y+D)})})} -{(sin{(E*x+F)})}^{2} - {(sin{(E*y+G)})}^{2}\)

      [A, B, C, D, E, F, G]

    • Reza’s Custom Equation Two [radians] With Offset

      \(z = abs{(cos{({(A*{(x+B)})} + C*{(y+D)})})} + abs{(cos{({(A*{(x+B)})} - C*{(y+D)})})} -{(sin{(E*x+F)})}^{2} - {(sin{(E*y+G)})}^{2} +\text{Offset}\)

      [A, B, C, D, E, F, G, Offset]

  • Sine XY [radians] (SineXY)

    • Sine XY [radians]

      \(z = amplitude * sin{(pi * {(xy - center)} / width)}\)

      [amplitude, center, width]

    • Sine XY [radians] With Offset

      \(z = amplitude * sin{(pi * {(xy - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Sine X Plus Cosh Y [radians] (SineX_Plus_CoshY)

    • Sine X Plus Cosh Y [radians]

      \(z = amplitude\_x * sin{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *cosh{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Sine X Plus Cosh Y [radians] With Offset

      \(z = amplitude\_x * sin{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *cosh{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Sine X Plus Sine Y [radians] (SineX_Plus_SineY)

    • Sine X Plus Sine Y [radians]

      \(z = amplitude\_x * sin{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *sin{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Sine X Plus Sine Y [radians] With Offset

      \(z = amplitude\_x * sin{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *sin{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Sine X Plus Tangent Y [radians] (SineX_Plus_TangentY)

    • Sine X Plus Tangent Y [radians]

      \(z = amplitude\_x * sin{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *tan{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Sine X Plus Tangent Y [radians] With Offset

      \(z = amplitude\_x * sin{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *tan{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Sine X Times Cosh Y [radians] (SineX_Times_CoshY)

    • Sine X Times Cosh Y [radians]

      \(z = amplitude * sine{(pi * {(x - center\_x)} / width\_x)} * cosh{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Sine X Times Cosh Y [radians] With Offset

      \(z = amplitude * sine{(pi * {(x - center\_x)} / width\_x)} * cosh{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Sine X Times Sine Y [radians] (SineX_Times_SineY)

    • Sine X Times Sine Y [radians]

      \(z = amplitude * sin{(pi * {(x - center\_x)} / width\_x)} * sin{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Sine X Times Sine Y [radians] With Offset

      \(z = amplitude * sin{(pi * {(x - center\_x)} / width\_x)} * sin{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Sine X Times Tangent Y [radians] (SineX_Times_TangentY)

    • Sine X Times Tangent Y [radians]

      \(z = amplitude * sin{(pi * {(x - center\_x)} / width\_x)} * tan{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Sine X Times Tangent Y [radians] With Offset

      \(z = amplitude * sin{(pi * {(x - center\_x)} / width\_x)} * tan{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Tangent XY [radians] (TangentXY)

    • Tangent XY [radians]

      \(z = amplitude * tan{(pi * {(xy - center)} / width)}\)

      [amplitude, center, width]

    • Tangent XY [radians] With Offset

      \(z = amplitude * tan{(pi * {(xy - center)} / width)} + \text{Offset}\)

      [amplitude, center, width, Offset]

  • Tangent X Plus Cosh Y [radians] (TangentX_Plus_CoshY)

    • Tangent X Plus Cosh Y [radians]

      \(z = amplitude\_x * tan{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *cosh{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Tangent X Plus Cosh Y [radians] With Offset

      \(z = amplitude\_x * tan{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *cosh{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Tangent X Plus Sine Y [radians] (TangentX_Plus_SineY)

    • Tangent X Plus Sine Y [radians]

      \(z = amplitude\_x * tan{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *sin{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Tangent X Plus Sine Y [radians] With Offset

      \(z = amplitude\_x * tan{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *sin{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Tangent X Plus Tangent Y [radians] (TangentX_Plus_TangentY)

    • Tangent X Plus Tangent Y [radians]

      \(z = amplitude\_x * tan{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *tan{(pi * {(y - center\_y)} / width\_y)}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y]

    • Tangent X Plus Tangent Y [radians] With Offset

      \(z = amplitude\_x * tan{(pi * {(x - center\_x)} / width\_x)} + amplitude\_y *tan{(pi * {(y - center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude_x, center_x, width_x, amplitude_y, center_y, width_y, Offset]

  • Tangent X Times Cosh Y [radians] (TangentX_Times_CoshY)

    • Tangent X Times Cosh Y [radians]

      \(z = amplitude * tan{(pi * {(x - center\_x)} / width\_x)} * cosh{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Tangent X Times Cosh Y [radians] With Offset

      \(z = amplitude * tan{(pi * {(x - center\_x)} / width\_x)} * cosh{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Tangent X Times Sine Y [radians] (TangentX_Times_SineY)

    • Tangent X Times Sine Y [radians]

      \(z = amplitude * tan{(pi * {(x - center\_x)} / width\_x)} * sin{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Tangent X Times Sine Y [radians] With Offset

      \(z = amplitude * tan{(pi * {(x - center\_x)} / width\_x)} * sin{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

  • Tangent X Times Tangent Y [radians] (TangentX_Times_TangentY)

    • Tangent X Times Tangent Y [radians]

      \(z = amplitude * tan{(pi * {(x - center\_x)} / width\_x)} * tan{(pi * {(y -center\_y)} / width\_y)}\)

      [amplitude, center_x, width_x, center_y, width_y]

    • Tangent X Times Tangent Y [radians] With Offset

      \(z = amplitude * tan{(pi * {(x - center\_x)} / width\_x)} * tan{(pi * {(y -center\_y)} / width\_y)} + \text{Offset}\)

      [amplitude, center_x, width_x, center_y, width_y, Offset]

UserDefinedFunction

  • User Defined Function (UserDefinedFunction)

    • User Defined Function

      \(z = User Defined Function\)